Skip to main content

Active Regions

  • Chapter
  • First Online:
New Millennium Solar Physics

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 458))

  • 1357 Accesses

Abstract

Magnetically, the Sun can be compartmentalized into boxes around active regions that can be modeled separately, since the mean magnetic field strength in the surrounding Quiet Sun regions and in coronal holes is about three orders of magnitude lower. An example of a (dipolar) active region is shown in Fig. 8.1, as observed with HMI/SDO and AIA/SDO in various wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

(8.1) Active Regions: Magnetic Field Modeling

  • Amari, T., Boulmezaoud, T.Z., and Aly, J.J. 2006, Well posed reconstruction of the solar coronal magnetic field, A&A 446, 691, [94 c, 8 c/y].

    Google Scholar 

  • Aschwanden, M.J. 2013a, A nonlinear force-free magnetic field approximation suitable for fast forward-fitting to coronal loops. I. Theory, SoPh 287, 323, [17 c, 4 c/y].

    Google Scholar 

  • Aschwanden, M.J. and Malanushenko, A. 2013, A nonlinear force-free magnetic field approximation suitable for fast forward-fitting to coronal loops. II. Numeric Code and Tests, SoPh 287, 345, [20 c, 4 c/y].

    Google Scholar 

  • Aschwanden, M.J. 2013b, A nonlinear force-free magnetic field approximation suitable for fast forward-fitting to coronal loops. III. The Free Energy, SoPh 287, 369, [14 c, 3 c/y].

    Google Scholar 

  • Aschwanden, M.J. 2013a, Nonlinear force-free magnetic field fitting to coronal loops with and without stereoscopy, ApJ 763, 115, [17 c, 4 c/y].

    Google Scholar 

  • Aschwanden, M.J., De Pontieu, B., and Katrukha, E. 2013, Optimization of Curvi-Linear Tracing Applied to Solar Physics and Biophysics, Entropy, 15(8), 3007, [11 c, 2 c/y].

    Google Scholar 

  • Aschwanden, M.J., Sun, X.D., and Liu, Y. 2014, The magnetic field of active region 11158 during the 2011 February 12–17 flares: Differences between photospheric extrapolation and coronal forward-fitting methods, ApJ 785, 34, [23 c, 7 c/y].

    Google Scholar 

  • Chifu, I., Inhester, B., and Wiegelmann, T. 2015, Coronal magnetic field modeling using stereoscopy constraints, A&A 577, A123, [4 c, 2 c/y].

    Google Scholar 

  • Chifu, I., Wiegelmann, T., and Inhester, B. 2017, Nonlinear force-free coronal magnetic stereoscopy, ApJ 837, 10, [1 c, 1 c/y].

    Google Scholar 

  • De Rosa, M.L., Schrijver, C.J., Barnes, G., et al. 2009, A critical assessment of nonlinear force-free field modeling of the solar corona for active region 10953, ApJ 696, 1780, [230 c, 27 c/y].

    Google Scholar 

  • De Rosa, M.L., Wheatland, M.S., Leka, K.D., et al. 2015, The influence of spatial resolution on nonlinear force-free modeling, ApJ 811, 107, [22 c, 9 c/y].

    Google Scholar 

  • Gary, G.A. 2001, Plasma beta above a solar active region: Rethinking the paradigm, SoPh 203, 71, [259 c, 16 c/y].

    Google Scholar 

  • Gilchrist,S.A., Braun, D.C., and Barnes, G. 2016, A fixed-point scheme for the numerical construction of magnetohydrostatic atmospheres in three dimensions, SoPh 291, 3583, [3 c, 3 c/y].

    Google Scholar 

  • Grad, H. and Rubin, H. 1958, in Peaceful Uses of Atomic Energy: Proc. Second UN International Atomic Energy Conference, 31 (Geneva: UN), 190.

    Google Scholar 

  • Malanushenko, A., Schrijver, C.J., De Rosa, M.L., et al. 2014, Using coronal loops to reconstruct the magnetic field of an active region before and after a major flare, ApJ 783, 102, [31 c, 9 c/y].

    Google Scholar 

  • Metcalf, T.R., De Rosa, M.L., Schrijver, C.J. et al. 2008, Nonlinear force-free modeling of coronal magnetic fields. II. Modeling a filament arcade and simulated chromospheric and photospheric vector fields, SoPh 247, 269, [152 c, 16 c/y].

    Google Scholar 

  • Schrijver et al. 2006 Nonlinear force-free modeling of coronal magnetic fields Part I: A quantitative comparison of methods, SoPh 235, 161, [215 c, 19 c/y].

    Google Scholar 

  • Valori, G., Kliem, B., and Fuhrmann, M. 2007, Magnetofrictional extrapolations of Low and Lou’s force-free equilibria SoPh 245, 263, [42 c, 4 c/y].

    Google Scholar 

  • Warren, H.P., Crump, N.A., Ugarte-Urra, I. et al. 2018, Towards a quantitative comparison of magnetic field extrapolations and observed coronal loops, ApJ 860, 46.

    Article  ADS  Google Scholar 

  • Wheatland, M.S., Sturrock, P.A., and Roumeliotis, G. 2000, An optimization approach to reconstructing force-free fields, ApJ 540, 1150, [249 c, 14 c/y].

    Google Scholar 

  • Wheatland, M.S. 2006, A fast current-field iteration method for calculating nonlinear force-free fields, SoPh 238, 29, [33 c, 3 c/y].

    Google Scholar 

  • Wheatland, M.S. and Régnier, S. 2009, A self-consistent nonlinear force-free solution for a solar active region magnetic field, ApJ 700, L88, [42 c, 5 c/y].

    Google Scholar 

  • Wiegelmann, T. 2004, Optimization code with weighting function for the reconstruction of coronal magnetic fields, SoPh 19, 87, [270 c, 20 c/y].

    Google Scholar 

  • Wiegelmann, T., Inhester, B., and Sakurai, T. 2006, Preprocessing of vector magnetograph data for a nonlinear force-free magnetic field reconstruction SoPh 233, 215, [212 c, 18 c/y].

    Google Scholar 

  • Wiegelmann, T., Thalmann, J.K., Inhester, B., et al. 2012, How should one optimize nonlinear force-free coronal magnetic field extrapolations from SDO/HMI vector magnetograms? SoPh 281, 37, [62 c, 11 c/y].

    Google Scholar 

  • Wiegelmann,T., and Sakurai, T. 2012, Solar force-free magnetic fields, LRSP 9, 5, [97 c, 18 c/y].

    Google Scholar 

  • Wiegelmann,T., Thalmann, J. K., and Solanki, S.K. 2014, The magnetic field in the solar atmosphere, A&AR 22, 78, [38 c, 11 c/y].

    Google Scholar 

  • Wiegelmann,T., Petrie, G.J.D., and Riley,P. 2017a, Coronal magnetic field models, SSRv 210, 249, [10 c, 10 c/y].

    Google Scholar 

  • Wiegelmann,T., Neukirch, T., Nickeler, D.H., et al. 2017b, Magneto-static modeling from Sunrise/IMaX: Application to an active region observed with Sunrise II, ApJSS 229, 18, [7 c, 7 c/y].

    Google Scholar 

  • Yang, W.H., Sturrock, P.A., and Antiochos, S.K. 1986, Force-free magnetic fields - The magneto-frictional method, ApJ 309, 383, [189 c, 6 c/y].

    Google Scholar 

  • Zhu, X.S., Wang, H.N., Du, Z.L., et al. 2013, Forced field extrapolation: Testing a magnetohydrodynamic (MHD) relaxation method with a flux-rope emergence model, ApJ 768, 119, [15 c, 3 c/y].

    Google Scholar 

  • Zhu, X.S. and Wiegelmann, T. 2018, On the extrapolation of magneto-hydrodstatic equilibria on the Sun, ApJ 866, 130.

    Article  ADS  Google Scholar 

(8.2) Active Regions: Magnetic Nonpotentiality

  • Aschwanden, M.J. and Sandman, A.W. 2010, Bootstrapping the coronal magnetic field with STEREO: unipolar potential field modeling, AJ 140, 723, [23 c, 3 c/y].

    Google Scholar 

  • Bobra, M.G., van Ballegooijen, A.A., and DeLuca, E.E. 2008, Modeling magnetic fields in solar active regions, ApJ 672, 1209, [75 c, 8 c/y].

    Google Scholar 

  • Falconer, D.A., Moore, R.L., and Gary, G.A. 2008, Magnetogram measures of total nonpotentiality for prediction of solar coronal mass ejections from active regions of any degree of magnetic complexity, ApJ 689, 1443, [33 c, 3 c/y].

    Google Scholar 

  • Georgoulis, M.K. and LaBonte, B.J. 2004, Vertical Lorentz force and cross-field currents in the photospheric magnetic fields of solar active regions, ApJ 615, 1029, [27 c, 2 c/y].

    Google Scholar 

  • Georgoulis, M.K., Tziotziou, K., and Raouafi, N.E., 2012, Magnetic energy and helicity budgets in the active region solar corona. II. Nonlinear force-free approximation, ApJ 759, 1, [29 c, 5 c/y].

    Google Scholar 

  • Régnier, S., Amari, T., and Kersale, E. 2002, 3-D coronal magnetic field from vector magnetograms: non-constant α force-free configuration of the active region NOAA 8151, A&A 392, 1119, [88 c, 6 c/y].

    Google Scholar 

  • Sandman, A.W., Aschwanden, M.J., DeRosa, M.L., et al. 2009, Comparison of STEREO/ EUVI loops with potential magnetic field models, SoPh 259, 1, [31 c, 4 c/y].

    Google Scholar 

  • Schrijver, C.J., De Rosa, M.L., Title, A.M., et al. 2005, The nonpotentiality of active region coronae and the dynamics of the photospheric magnetic field, ApJ 628, 501, [88 c, 7 c/y].

    Google Scholar 

  • Schrijver, C.J. 2016, The nonpotentiality of coronae of solar active regions, the dynamics of the surface magnetic field, and the potential for large flares, ApJ 820, 103, [7 c, 5 c/y].

    Google Scholar 

  • Sun, X., Hoeksema, J.T., Liu, Y., et al. 2012, Evolution of magnetic field and energy in a major eruptive active region based on SDO/HMI observation, ApJ 748, 77, [184 c, 33 c/y].

    Google Scholar 

  • Thalmann, J.K., Tiwari, S.K., and Wiegelmann, T. 2014, Force-free field modeling of twist and braiding-induced magnetic energy in an active region corona, ApJ 780, 102, [16 c, 5 c/y].

    Google Scholar 

  • Titov, V.S., Török, T., Mikic, Z., et al. 2014, A method for embedding circular force-free flux ropes in potential magnetic fields. ApJ 790, 163, [16 c, 5 c/y].

    Google Scholar 

(8.3) Active Regions: Magnetic Helicity

  • Berger, M.A. and Field, G.B. 1984, The topological properties of magnetic helicity, J. Fluid Mech. 147, 133, [714 c, 21 c/y].

    Google Scholar 

  • Chae, J. 2001, Observational determination of the rate of magnetic helicity transport through the solar surface via the horizontal motion of field line footpoints, ApJ 560, L95, [186 c, 11 c/y].

    Google Scholar 

  • Dalmasse, K., Pariat, E., Valori, G., et al. 2018, Studying the transfer of magnetic helicity in solar active regions with the connectivity-based flux density method, ApJ 852, 141.

    Article  ADS  Google Scholar 

  • Démoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L., et al. 2002a, What is the source of the magnetic helicity shed by CMEs? The long-term helicity budget of AR 7978, A&A 382, 650, [163 c, 11 c/y].

    Google Scholar 

  • Démoulin, P., Mandrini, C.H., van Driel-Gesztelyi, L., et al. 2002b, The magnetic helicity injected by shearing motions, SoPh 207, 87, [73 c, 5 c/y].

    Google Scholar 

  • DeVore, C.R. 2000, Magnetic helicity generation by solar differential rotation, ApJ 539, 944, [167 c, 10 c/y].

    Book  Google Scholar 

  • Green, L.M., Lopez Fuentes, M.C., Mandrini, C.H., et al. 2002, The magnetic helicity budget of a CME-prolific active region, SoPh 208, 43, [124 c, 8 c/y].

    Google Scholar 

  • Hagino, M. and Sakurai, T. 2004, Latitude variation of helicity in solar active regions, PASJ 56, 831, [89 c, 6 c/y].

    Google Scholar 

  • Hagino, M. and Sakurai, T. 2005, Solar-cycle variation of magnetic helicity in active regions, PASJ 57(3), 481, [57 c, 5 c/y].

    Google Scholar 

  • Kusano, K., Maeshiro, T., Yokoyama, T. et al. 2002, Measurement of magnetic helicity injection and free energy loading into the solar corona, ApJ 577, 501, [173 c, 11 c/y].

    Google Scholar 

  • LaBonte, B.J., Georgoulis, M.K., and Rust, D.M. 2007, Survey of magnetic helicity injection in regions producing X-class flares, ApJ 671, 955, [79 c, 8 c/y].

    Google Scholar 

  • Liu, Y., Hoeksema, J.T., and Sun X. 2014a, Test of the hemispheric rule of magnetic helicity in the Sun using the HMI data, ApJ 783, L1, [14 c, 5 c/y].

    Google Scholar 

  • Liu, Y., Hoeksema, J.T., Bobra, M. et al. 2014b, Magnetic helicity in emerging solar active regions, ApJ 785, 13, [19 c, 5 c/y].

    Google Scholar 

  • Nindos, A., Zhang, J., and Zhang, H. 2003, The magnetic helicity budget of solar active regions and coronal mass ejections, ApJ 594, 1033, [112 c, 8 c/y].

    Google Scholar 

  • Pevtsov, A.A., Canfield, R.C., Sakurai, T., et al. 2008, On the solar cycle variation of the hemispheric helicity rule, ApJ 677, 719, [39 c, 4 c/y].

    Google Scholar 

  • Rudenko, G.V. and Myshyakov, I.I. 2011, Gauge-invariant helicity of force-free magnetic fields in a rectangular box, SoPh 270, 165, [16 c, 2 c/y].

    Google Scholar 

  • Thalmann, J.K., Inhester, B., and Wiegelmann, T. 2011, Estimating the relative helicity of coronal magnetic fields, SoPhy 272, 243, [19 c, 3 c/y].

    Google Scholar 

  • Valori, G., Pariat, E., Anfinogentov, S., et al. 2016, Magnetic helicity estimations in models and observations of the solar magnetic field. Part I: Finite volume methods. SSRv 201, 147, [8 c, 5 c/y].

    Google Scholar 

  • Welsch, B.T. and Longcope, D.W. 2003, Magnetic helicity injection by horizontal flows in the Quiet Sun. I. Mutual-helicity flux, ApJ 588, 620, [73 c, 5 c/y].

    Google Scholar 

  • Yang, S., Buechner, J., Santos, J.C., et al. 2013), Evolution of relative magnetic helicity: Method of computation and its application to a simulated solar corona above an active region, SoPh 283, 369, [14 c, 3 c/y].

    Google Scholar 

(8.4) Active Regions: Tomography Methods

  • Aschwanden, M.J. and Bastian, T.S. 1994a, VLA stereoscopy of solar active regions. I. Method and tests, ApJ 426, 425, [35 c, 2 c/y].

    Google Scholar 

  • Aschwanden, M.J. and Bastian, T.S. 1994b, VLA stereoscopy of solar active regions. II. Altitude, relative motion, and center-to-limb darkening at 20 cm emission, ApJ 426, 434, [38 c, 2 c/y].

    Google Scholar 

  • Aschwanden, M.J., Lim, J., Gary, D.E., et al. 1995, Solar rotation steoroscopy in microwaves, ApJ 454, 512, [39 c, 2 c/y].

    Google Scholar 

  • Aschwanden, M.J. 2011a, Solar stereoscopy and tomography, LRSP 8, 1, [19 c, 3 c/y].

    Google Scholar 

  • Aschwanden, M.J. 2011b, 3-D reconstruction of active regions with STEREO, J.Atmos. Solar-Terr.Phys 73(10), 1082, [7 c, 1 c/y].

    Google Scholar 

  • Butala, M.D., Frazin, R.A., and Kamalabadi, F. 2005, 3-D estimates of the coronal electron density at times of extreme solar activity, JGR 110(A9), CiteID A09S09, [9 c, 0.7 c/y].

    Google Scholar 

  • Butala, M.D., Hewett, R.J., Frazin, R.A., et al. 2010, Dynamic 3-D tomography of the Sun SoPh 262, 495, [21 c, 3 c/y].

    Google Scholar 

  • Dunn, T., Jackson, B.V., Hick, P.P., et al. 2005, Comparative analyses of the CSSS calculation in the UCSD tomographic solar observations, SoPh 227, 339, [19 c, 2 c/y].

    Google Scholar 

  • Frazin, R.A. 2000, Tomography of the solar corona. I. A robust, regularized, positive estimation method, ApJ 530, 1026, [44 c, 3 c/y].

    Google Scholar 

  • Frazin, R.A. and Janzen, P. 2002, Tomography of the solar corona. II. Robust, regularized, positive estimation of the 3-D electron density distribution from LASCO-C2 polarized white-light images, ApJ 570, 408, [56 c, 4 c/y].

    Google Scholar 

  • Frazin, R.A., Butala, M.D., Kemball, M.D., and Kamalabadi, F. 2005a, Time-dependent reconstruction of nonstationary objects with tomographic or interferometric measurements, ApJL 635, L197, [19 c, 2 c/y.

    Google Scholar 

  • Frazin, R.A., Kamalabadi, F., and Weber, M.A. 2005b, On the combination of differential emission measure analysis and rotational tomography for 3-D solar EUV imaging, ApJ 628, 1070, [27 c, 2 c/y].

    Google Scholar 

  • Frazin, R.A. and Kamalabadi, F. 2005, Rotational tomography for 3-D reconstruction of the white-light and EUV corona in the post-SOHO era, SoPh 228, 219, [23 c, 2 c/y].

    Google Scholar 

  • Hurlburt, N.E., Martens, P.C.H., Slater,G.L., et al. 1994, Volume reconstruction of magnetic fields using solar imagery, in Solar Active Region Evolution: Comparing Models with Observations, (eds, Balasubramaniam, K.S. and G.W.Simon), Astronomical Society of the Pacific (ASP), Conf.Ser.Vol. 68, 30.

    Google Scholar 

  • Jackson, B.V., Hick, P.L., Kojima, M., et al. 1998, Heliospheric tomography using interplanetary scintillation observations. I. Combined Nagoya and Cambridge data, JGR 103, 12049, [100 c, 5 c/y].

    Google Scholar 

  • Jackson, B.V. and Hick, P.L., 2002, Corotational tomography of heliospheric features using global Thomson scattering data, SoPh 211, 345, [17 c, 1 c/y].

    Google Scholar 

  • Jensen, J.M., Duvall, T.L.Jr., and Jacobsen, B.H. (2001), Imaging an emerging active region with helioseismic tomography, ApJ 553, L193, [60 c, 4 c/y].

    Google Scholar 

  • Kramar, M., Inhester, B., and Solanki, S.K. 2006, Vector tomography for the coronal magnetic field. I. Longitudinal Zeeman effect measurements, A&A 456, 665, [26 c, 2 c/y].

    Google Scholar 

  • Kramar, M., Inhester, B., Lin, H. 2013, Vector tomography for the coronal magnetic field. II. Hanle effect measurements, ApJ 775, 25, [14 c, 3 c/y].

    Google Scholar 

  • Kramar, M., Lin, H., and Tomczyk, S. 2016, Direct observation of solar coronal magnetic fields by vector tomography of the coronal emission line polarization, ApJL 819, L36, [4 c, 4 c/y].

    Google Scholar 

  • Lee, J.W., White, S.M., Kundu, M.R., et al. 1999, A test for coronal magnetic field extrapolations, ApJ 510, 413, [40 c, 2 c/y].

    Google Scholar 

  • Lloveras, D.G., Nuevo, F.A., Vasquez, A.M., et al. 2016, Comparative analysis of solar minima with EUV tomography, BAAA 58, 272, [1 c, 0.7 c/y].

    Google Scholar 

  • Morgan, H. and Habbal, S.R. 2010, Observational aspects of the 3-D coronal structure over a solar activity cycle, ApJ 710, 1, [21 c, 3 c/y].

    Google Scholar 

  • Nita, G.M., Fleishman, G.D., Jing, J., et al. 2011, 3-D structure of microwave sources from solar rotation stereoscopy versus magnetic extrapolations, ApJ 737, 82, [9 c, 1 c/y].

    Google Scholar 

  • Ryabov, B.I., Maksimov, V.P., Lesovoi, S.V., et al. 2005, Coronal magnetography of solar active region 8356 with the SSRT and NoRH radio heliographs, SoPh 226, 223, [9 c, 0.7 c/y].

    Google Scholar 

  • Vasquez, A.M., Frazin, R.A., and Manchester, Ward B.IV. 2010, The solar minimum corona from differential emission measure tomography, ApJ 715, 1352, [28 c, 4 c/y].

    Google Scholar 

  • Wang, T.J., Reginald, N.L., Davila, J.M., et al. 2017, Variation in coronal activity from solar cycle 24 minimum to maximum using 3-D reconstructions of the coronal electron density from STEREO/COR1, SoPh 292, 97, [2 c, 2 c/y].

    Google Scholar 

(8.5) Active Regions: High-Temperature Emission

  • Del Zanna, G. 2013, The multi-thermal emission in solar active regions, A&A 558, A73, [66 c, 15 c/y].

    Google Scholar 

  • Del Zanna, G. and Mason, H.E. 2014, Elemental abundances and temperatures of quiescent solar active region cores from X-ray observations, A&A 565, A14, [25 c, 7 c/y].

    Google Scholar 

  • Del Zanna, G. Tripathi, D., Mason, H., et al. 2015, The evolution of the emission measure distribution in the core of an active region, A&A 573, A104, [11 c, 4 c/y].

    Google Scholar 

  • Ishikawa, S.N., Glesener, L., Christe, S., et al. 2014, Constraining hot plasma in a non-flaring solar active region with FOXSI hard X-ray observations, PASJ 66, S15, [12 c, 3 c/y].

    Google Scholar 

  • Hannah, I.G., Grefenstette, B.W., Smith, D.M., 2016, The first X-ray imaging spectroscopy of quiescent solar active regions with NuSTAR, ApJ 820, L14, [14 c, 9 c/y].

    Google Scholar 

  • Hara, H., Tsuneta, S., Lemen, J.R., et al. 1992, High-temperature plasmas in active regions observed with the SXT aboard Yohkoh, PASJ 44, L135, [135 c, 5 c/y].

    Google Scholar 

  • Ko, Y.K., Raymond, J.C., Ciaravella, A., et al. 2002, SOHO UV coronagraph spectrometer and Yohkoh SXT observations of the high-temperature corona above an active region complex, ApJ 578, 979, [35 c, 2 c/y].

    Google Scholar 

  • Ko, Y.K., Doschek, G.A., Warren, H.P., et al. 2009, Hot plasma in nonflaring active regions observed by the EIS on Hinode, ApJ 697, 1956, [86 c, 10 c/y].

    Google Scholar 

  • Mackovjak, S., Dzifacova, E., and Dudik, J. 2014, Differential emission measure analysis of active region cores and quiet Sun for the non-Maxwellian κ-distributions, A&A 564, A130, [8 c, c 2/y].

    Google Scholar 

  • Reale, F., Testa, P., Klimchuk, J.A., et al. 2009, Evidence of widespread hot plasma in a nonflaring coronal active region from Hinode/X-Ray Telescope, ApJ 698, 756, [63 c, 7 c/y].

    Google Scholar 

  • Schmelz, J.T., Saar, S.H., DeLuca, E.E., et al. 2009, Hinode XRT detection of hot emission from quiescent active regions: A nanoflare signature? ApJ 693, L131, [69 c, 8 c/y].

    Google Scholar 

  • Schmelz, J.T., Pathak, S., Jenkins, B.S., et al. 2013, Deeper by the dozen: Understanding the cross-field temperature distributions of coronal loops, ApJ 764, 53, [13 c, 3 c/y].

    Google Scholar 

  • Warren, H.P., Feldman, U., and Brown, C.M. 2008, Solar observations of high-temperature emission with the EIS on Hinode, ApJ 685, 1277, [23 c, 2 c/y].

    Google Scholar 

  • Warren, H.P., Brooks, D.H., and Winebarger, A.R. 2011, Constraints on the heating of high-temperature active region loops: Observations from Hinode and the SDO, ApJ 734, 90, [78 c, 12 c/y].

    Google Scholar 

  • Warren, H.P., Winebarger, A.R., and Brooks, D.H. 2012, A systematic survey of high-temperature emission in solar active regions, ApJ 759, 141, [85 c, 15 c/y].

    Google Scholar 

(8.6) Active Regions: Plasma Outflows

  • Baker, D., van Driel-Gesztelyi, L., Mandrini, C.H. et al. 2009, Magnetic reconnection along quasi-separatrix layers as a driver of ubiquitous active region outflows, ApJ 705, 926, [82 c, 10 c/y].

    Google Scholar 

  • Brooks, D.H. and Warren, H.P. 2011, Establishing a connection between active region outflows and the solar wind: Abundance measurements with EIS/Hinode, ApJ 727, L13, [60 c, 9 c/y].

    Google Scholar 

  • Brooks, D.H. and Warren, H.P. 2012, The coronal source of EUV profile asymmetries in solar active region outflows, ApJ 760, L5, [24 c, 4 c/y].

    Google Scholar 

  • Culhane, J.L., Brooks, D.H., van Driel-Gesztelyi, L., et al. 2014, Tracking solar active region outflow plasma from its source to the near-Earth environment, SoPh 289, 3799, [3 c, 1 c/y].

    Google Scholar 

  • DelZanna, G. 2008, Flows in active region loops observed by Hinode EIS, A&A 481, L49, [115 c, 12 c/y].

    Google Scholar 

  • Démoulin, P., Baker, D., Mandrini, C.H., et al. 2013, The 3-D geometry of active region upflows deduced from their limb-to-limb evolution, SoPh 283, 341, [14 c, 3 c/y].

    Google Scholar 

  • Doschek, G.A., Warren, H.P., Mariska, J.T., et al. 2008, Flows and nonthermal velocities in solar active regions observed with the EIS on Hinode: A tracer of active region sources of heliospheric magnetic fields? ApJ 686, 1362, [114 c, 12 c/y].

    Google Scholar 

  • Doschek, G.A. 2012, The dynamics and heating of active region loops, ApJ 754, 153, [22 c, 4 c/y].

    Google Scholar 

  • Habbal, S.R., Scholl, I.F., and McIntosh, S.W. 2008, Impact of active regions on coronal hole outflows, ApJ 683, L75, [6 c, 0.6 c/y].

    Google Scholar 

  • Harra, L.K., Hara, H., Imada, S., et al. 2007, Coronal dimming observed with Hinode: Outflows related to a coronal mass ejection, PASJ 59, S801, [59 c, 6 c/y].

    Google Scholar 

  • Harra, L.K., Archontis, V., Pedram, E., et al. 2012, The creation of outflowing plasma in the corona at emerging flux regions: Comparing observations and simulations, SoPh 278, 47, [18 c, 3 c/y].

    Google Scholar 

  • Harra, L.K., Sakao, T., Mandrini, C.H., et al. 2008, Outflows at the edges of active regions: contribution to solar wind formation ? ApJ 676, L147, [117 c, 12 c/y].

    Google Scholar 

  • He, J.S., Marsch, E., Tu, C.Y., et al. 2010, Intermittent outflows at the edge of an active region - A possible source of the solar wind? A&A 516, A14, [33 c, 4 c/y].

    Google Scholar 

  • Murray, M.J., Baker, D., van Driel-Gesztelyi, et al. 2010, Outflows at the edges of an active region in a coronal hole: A signature of active region expansion? SoPh 261, 253, [36 c, 5 c/y].

    Google Scholar 

  • Sakao, T., Kano, R., Narukage, N., et al. 2007, Continuous plasma outflows from the edge of a solar active region as a possible source of solar wind, Science 318, 1585, [131 c, 12 c/y].

    Google Scholar 

  • Slemzin, V., Harra, L., Urnov, A., et al. 2013, Signatures of slow solar wind streams from active regions in the inner corona, SoPh 286, 157, [15 c, 3 c/y].

    Google Scholar 

  • Tian, H., McIntosh, S.W., and De Pontieu, B. 2011, The spectroscopic signature of quasi-periodic upflows in active region timeseries, ApJ 727, L37, [70 c, 11 c/y].

    Google Scholar 

  • Tu, C.Y., Zhou, C., Marsch, E., et al. 2005, Solar wind origin in coronal funnels, Science 308, Issue 5721, 519, [178 c, 14 c/y].

    Google Scholar 

  • van Driel-Gesztelyi, L., Culhane, J.L., Baker, D., et al. 2012, Magnetic topology of active regions and coronal holes: Implications for coronal outflows and the solar wind, SoPh 281, 237, [34 c, 6 c/y].

    Google Scholar 

  • Zangrilli, L. and Poletto, G. 2016, Evolution of active region outflows throughout an active region lifetime, A&A 594, A40, [4 c, 2 c/y].

    Google Scholar 

(8.7) Active Regions: Heating

  • Antolin, P. and Shibata, K. 2010, The role of torsional Alfvén waves in coronal heating, ApJ 712, 494, [43 c, 6 c/y].

    Google Scholar 

  • Antolin, P., Shibata, K., and Vissers, G. 2010, Coronal rain as a marker for coronal heating mechanisms, ApJ 716, 154, [56 c, 7 c/y].

    Google Scholar 

  • Aschwanden, M.J., Nightingale, R.W., and Alexander, D. 2000, Evidence for nonuniform heating of coronal loops inferred from multithread modeling of TRACE data, ApJ 541, 1059, [234 c, 13 c/y].

    Google Scholar 

  • Aschwanden, M.J. 2001, An evaluation of coronal heating models for active regions based on Yohkoh, SOHO, and TRACE observations, ApJ 560, 1035, [91 c, 6 c/y].

    Google Scholar 

  • Aschwanden, M.J., Winebarger, A., Tsiklauri, D. et a. 2007, The coronal heating paradox, ApJ 659, 1673, [75 c, 7 c/y].

    Google Scholar 

  • Asgari-Targhi, M. and van Ballegooijen, A.A. 2012, Model for Alfvén wave turbulence in solar coronal loops: Heating rate profiles and temperature fluctuations, ApJ 746, 81, [40 c, 7 c/y].

    Google Scholar 

  • Asgari-Targhi, M., van Ballegooijen, A.A., Cranmer, S.R., et al. 2013, The spatial and temporal dependence of coronal heating by Alfvén wave turbulence, ApJ 773, 111, [37 c, 8 c/y].

    Google Scholar 

  • Bradshaw, S.J., Klimchuk, J.A., and Reep, J.W. 2012, Diagnosing the time-dependence of active region core heating from the emission measure. I. Low-frequency nanoflares, ApJ 758, 53, [38 c, 7 c/y].

    Google Scholar 

  • Brosius, J.W., Daw, A.N., and Rabin, D.M. 2014, Pervasive faint Fe XIX emission from a solar active region observed with EUNIS-13: Evidence for nanoflare heating, ApJ 790, 112, [28 cm 8 c/y].

    Google Scholar 

  • Cargill, P.J. 2014, Active region emission measure distributions and implications for nanoflare heating, ApJ 784, 49. [27 c, 8 c/y].

    Google Scholar 

  • Cargill, P.J., Warren, H.P., and Bradshaw, S.J. 2015, Modelling nanoflares in active regions and implications for coronal heating mechanisms, Phil.Trans.Royal Soc. A, 373, 20140260, [13 c, 5 c/y].

    Google Scholar 

  • DeMoortel, I. and Browning, P. 2015, Recent advances in coronal heating, Philosophical Transactions Royal Society A 373, 2042, p.20140269, [27 c, 11 c/y].

    Google Scholar 

  • Hara, H., Watanabe, T., Harra, L.K., et al. 2008, Coronal plasma motions near footpoints of active region loops revealed from spectroscopic observations with Hinode EIS, ApJ 678, L67, 125 c, 13 c/y].

    Google Scholar 

  • Klimchuk, J.A. 2006, On solving the coronal heating problem, SoPh 234, 41, [468 c, 41 c/y].

    Google Scholar 

  • Klimchuk, J.A. 2015, Key aspects of coronal heating, Royal Society of London Philosophical Transactions Series A, 373, p.20140256, [44 c, 18 c/y].

    Google Scholar 

  • Lionello, R., Alexander, C.E., Winebarger, A.R., et al. 2016, Can large time delays observed in light curves of coronal loops be explained in impulsive heating ? ApJ 818, 129, [9 c, 6 c/y].

    Google Scholar 

  • Mandrini, C.H., Démoulin, P., and Klimchuk, J.A. 2000, Magnetic field and plasma scaling laws: Their implications for coronal heating models, ApJ 530, 999, [141 c, 8 c/y].

    Google Scholar 

  • Parker, E.N. 1988, Nanoflares and the solar X-ray corona, ApJ 330, 474, [1025 c, 35 c/y].

    Google Scholar 

  • Rappazzo, A.F., Velli, M., Einaudi, G., et al. 2007, Coronal heating, weak turbulence, and scaling laws, ApJ 657, L47, [91 c, 9 c/y].

    Google Scholar 

  • Rappazzo, A.F., Velli, M., Einaudi, G., et al. 2008, Nonlinear dynamics of the Parker scenario for coronal heating, ApJ 677, 1348, [120 c, 13 c/y].

    Google Scholar 

  • Reep, J.W., Bradshaw, S.J., and Klimchuk, J.A. 2013, Diagnosing the time dependence of active region core heating from the emission measure. II. Nanoflare trains, ApJ 764, 193, [25 c, 6 c/y].

    Google Scholar 

  • Schmieder, B., Rust, D.M., Georgoulis, M.K., et al. 2004, Emerging flux and the heating of coronal loops, ApJ 601, 530, [62 c, 5 c/y].

    Google Scholar 

  • Schrijver, C.J., Sandman, A.W., Aschwanden, M.J., et al. 2004, The coronal heating mechanism as identified by full-sun visualizations, ApJ 615, 512, [97 c, 7 c/y].

    Google Scholar 

  • Testa, P., De Pontieu, B., Martinez-Sykora, J., et al. 2013, Observing coronal nanoflares in active region moss, ApJ 770, L1, [49 c, 11 c/y].

    Google Scholar 

  • Tripathi, D., Klimchuk, J.A., and Mason, H.E. 2011, Emission measure distribution and heating of two active region cores, ApJ 740, 111, [50 c, 8 c/y].

    Google Scholar 

  • Ugarte-Urra, I., Winebarger, A.R., and Warren, H.P. 2006, An investigation into the variability of heating in a solar active region, ApJ 643, 1245, [44 c, 4 c/y].

    Google Scholar 

  • van Ballegooijen, A.A., Asgari-Targhi, M., and Berger, M.A. 2014, On the relationship between photospheric footpoint motions and coronal heating in solar active regions, ApJ 787, 87, [34 c, 10 c/y].

    Google Scholar 

  • Viall, N.M. and Klimchuk, J.A. 2011, Patterns of nanoflare storm heating exhibited by an active region observed with SDO/AIA, ApJ 738, 24, [63 c, 10 c/y].

    Google Scholar 

  • Viall, N.M. and Klimchuk, J.A. 2012, Evidence for widespread cooling in an active region observed with the SDO/AIA, ApJ 753, 35, [56 c, 10 c/y].

    Google Scholar 

  • Warren, H.P., Winebarger, A.R., and Brooks, D.H. 2010, Evidence for steady heating: Observations of an active region core with Hinode and TRACE, ApJ 711, 228, [51 c, 7 c/y].

    Google Scholar 

  • Winebarger, A.R., Schmelz, J.T., Warren, H.P., et al. 2011, Using a differential emission measure and density measurements in an active region core to test a steady heating model, ApJ 740, 2, [74 c, 11 c/y].

    Google Scholar 

(8.8) Active Regions: 3-D MHD Simulations

  • Abbett, W.P. and Fisher, G.H. 2003, A coupled model for the emergence of active region magnetic flux tube into the solar corona, ApJ 582, 475, [48 c, 3 c/y].

    Google Scholar 

  • Aschwanden, M.J., Wuelser, J.P., Nitta, N., et al. 2009, First 3-D reconstruction of coronal loops with STEREO A+B spacecraft. III. Instant stereoscopic tomography of active regions, ApJ 695, 12, [27 c, 3 c/y].

    Google Scholar 

  • Bingert, S. and Peter, H. 2011, Intermittent heating in the solar corona employing a 3D MHD model, A&A 530, A112, [70 c, 11 c/y].

    MATH  Google Scholar 

  • Bingert, S. and Peter, H. 2013, Nanoflare statistics in an active region 3D MHD coronal model, A&A 550, A30, [23 c, 5 c/y].

    Google Scholar 

  • Bjorgen, J.P. and Leenaarts, J. 2017, Numerical non-LTE 3D radiative transfer using a multigrid method, A&A 599, A118.

    Article  ADS  Google Scholar 

  • Bourdin, P.A., Bingert, S., and Peter, H. 2013, Observationally driven 3D MHD model of the solar corona above an active region, A&A 555, A123, [28 c, 6 c/y].

    Google Scholar 

  • Bourdin, P.A., Bingert, S., and Peter, H. 2015, Coronal energy input and dissipation in a solar active region 3D MHD model, A&A 580, A72, [7 c, 3 c/y].

    Google Scholar 

  • Bourdin, P.A., Bingert, S., and Peter, H. 2016, Scaling laws of coronal loops compared to a 3D MHD model of an active region, A&A 589, A86, [5 c, 3 c/y].

    Google Scholar 

  • Carlsson, M. and Stein, R.F. 2002, Dynamic hydrogen ionization, ApJ 572, 626, [139 c, 9 c/y].

    Google Scholar 

  • Chen, F., Peter, H., Bingert, S., et al. 2014, A model for the formation of the active region corona driven by magnetic flux emergence, A&A 564, A12, [17 c, 5 c/y].

    Google Scholar 

  • Cheung, M.C.M., Schüssler, M., Tarbell, T.D., et al. 2008, Solar surface emerging flux regions: A comparative study of radiative MHD modeling and Hinode SOT observations, ApJ 687, 1373, [127 c, 13 c/y].

    Google Scholar 

  • Cheung, M.C.M., Rempel, M., Title, A.M., et al. 2010, Simulation of the formation of a solar active region, ApJ 720, 233, [167 c, 22 c/y].

    Google Scholar 

  • Cheung, M.C.M. and DeRosa, M.L. 2012, A method for data-driven simulations of evolving solar active regions, ApJ 757, 147, [42 c, 8 c/y].

    Google Scholar 

  • Dalmasse, K., Aulanier, G., Démoulin, P., et al. 2015, The origin of net electric currents in solar active regions, ApJ 810, 17, [8 c, 3 c/y].

    Google Scholar 

  • Fang, F., and Fan, Y. 2015, δ-sunspot formation in simulation of active region scale flux emergence, ApJ 806, 79, [9 c, 4 c/y].

    Google Scholar 

  • Golding, T.P., Leenaarts, J., and Carlsson, M. 2016, Nonequilibrium helium ionization in an MHD simulation of the solar atmosphere, ApJ 817, 125, [9 c, 6 c/y].

    Google Scholar 

  • Gudiksen, B.V. and Nordlund, A. 2002, Bulk heating and slender magnetic loops in the solar corona, ApJ 572, L113, [106 c, 7 c/y].

    Google Scholar 

  • Gudiksen, B.V. and Nordlund, A. 2005a, An Ab initio approach to solar coronal loops, ApJ 618, 1031, [90 c, 6 c/y]

    Google Scholar 

  • Gudiksen, B.V. and Nordlund, A. 2005b, An Ab initio approach to the solar coronal heating problem, ApJ 618, 1020, [173 c, 11 c/y].

    Google Scholar 

  • Gudiksen, B.V., Carlsson, M., Hansteen, V.H. et al. 2011, The stellar atmospher simulation code Bifrost. Code description and validation, ApJ 531, 154, [140 c, 22 c/y].

    Google Scholar 

  • Kanella, C. and Gudiksen, B.V. 2017, Identification of coronal heating events in 3D simulations, A&A 603, A83, [1 c, 1 c/y].

    Google Scholar 

  • Lundquist, L.L, Fisher, G.H., and McTiernan, J.M. 2008, Forward modeling of active region coronal emissions. I. Methods and testing. ApJSS 179, 533, [26 c, 3 c/y].

    Google Scholar 

  • MacTaggart, D. 2011, Flux emergence within mature solar active regions, A&A 531, A108, [12 c, 2 c/y].

    Google Scholar 

  • Martinez-Sykora, J., De Pontieu, B., and Hansteen, V. 2012, 2-D radiative MHD simulations of the importance of partial ionization in the chromosphere, ApJ 753, 161, [58 c, 11 c/y].

    Google Scholar 

  • Rempel, M. and Cheung, M.C.M. 2014, Numerical simulations of active region scale flux emergence: From spot formation to decay, ApJ 785, 90, [51 c, 15 c/y].

    Google Scholar 

  • Savcheva, A., Pariat, E., van Ballegooijen, A., et al. 2012, Sigmoidal active region on the Sun: Comparison of a MHD simulation and a nonlinear force-free field model, ApJ 750, 15, [71 c, 13 c/y].

    Google Scholar 

  • Török, T., Leake, J.E., Titov, V.S., et al. 2014, Distribution of electric currents in solar active regions, ApJ 782, L10, [25 c, 7 c/y].

    Google Scholar 

(8.9) Active Regions: Correlations

  • Benevolenskaja, E.E., Kosovichev, A.G., Lemen, J.R., et al. 2002, Large-scale solar coronal structures in soft X-rays and their relationship to the magnetic flux, ApJ 571, L181, [34 c, 2 c/y].

    Google Scholar 

  • Fisher, G.H., Longcope, D.W., Metcalf, T.R., et al. 1998, Coronal heating in active regions as a function of global magnetic variables, ApJ 508, 885, [115 c, 6 c/y].

    Google Scholar 

  • Handy, B.N. and Schrijver, C.J. 2001, On the evolution of the solar photospheric and coronal magnetic field, ApJ 547, 1100, [21 c, 1 c/y].

    Google Scholar 

  • Meunier, N. 2003, Statistical properties of magnetic structures: Their dependence on scale and solar activity, A&A 405, 1107, [83 c, 3 c/y].

    Google Scholar 

  • Parker, E.N. 1983, Magnetic neutral sheets in evolving fields - Part Two - Formation of the solar corona, ApJ 264, 642, [436, 13 c/y].

    Google Scholar 

  • Rosner, R., Tucker, W.H., and Vaiana, G.S. 1978, Dynamics of the quiescent solar corona, ApJ 220, 643, [1301 c, 33 c/y].

    Google Scholar 

  • Schrijver, C.J., Sandman, A.W., Aschwanden, M.J., et al. 2004, The coronal heating mechanism as identified by full-Sun visualizations, ApJ 615, 512, [97 c, 7 c/y].

    Google Scholar 

  • Serio, S., Peres, G., Vaiana, G.S., et al. 1981, Closed coronal structures. II. Generalized hydrostatic model, ApJ 243, 288, [272 c, 7 c/y].

    Google Scholar 

  • van Driel-Gesztelyi, L., Démoulin, P., Mandrini, C.H., et al. 2003, The long-term evolution of AR 7978: The scalings of the coronal plasma parameters with the mean photospheric magnetic field, ApJ 586, 579, [36 c, 2 c/y].

    Google Scholar 

  • Warren, H.P. and Winebarger, A.R. 2006, Hydrostatic modeling of the integrated soft X-ray and extreme ultraviolet emission in solar active regions, ApJ 645, 711, [55 c, 5 c/y].

    Google Scholar 

  • Wolfson, R., Roald, C.B., Sturrock, P.A., et al. 2000, Coronal X-ray brightness and photospheric magnetic field: A study in correlations, ApJ 539, 995, [18 c, 1 c/y].

    Google Scholar 

(8.10) Active Regions: Coronal Streamers

  • Airapetian, V., Ofman, L., Sittler, E.C. et al. 2011, Probing the thermodynamics and kinematics of solar coronal streamers, ApJ 728, 67, [10 c, 2 c/y].

    Google Scholar 

  • Bemporad, A., Sterling, A.C., Moore, R.L., et al. 2005, A new variety of coronal mass ejection: Streamer puffs from compact ejective flares, ApJ 635, L189, [41 c, 3 c/y].

    Google Scholar 

  • Chen, Y., Song, H.Q., Li, B., et al. 2010, Streamer waves driven by coronal mass ejections, ApJ 714, 644, [32 c, 4 c/y].

    Google Scholar 

  • Feng, S.W., Chen, Y., Kong, X.L., et al. 2012, Radio signatures of coronal mass ejection streamer interaction and source diagnostics of type II radio burst, ApJ 753, 21, [29 c, 5 c/y].

    Google Scholar 

  • Frazin, R.A., Cranmer, S.R., and Kohl, J.L. 2003, Empirically determined anisotropic velocity distributions and outflows of O 5+ ions in a coronal streamer at solar minimum, ApJ 597, 1145, [59 c, 4 c/y].

    Google Scholar 

  • Frazin, R.A., Vasquez, A.M., Kamalabadi, F., et al. 2007, 3-D tomographic analysis of a high-cadence LASCO-C2 polarized brightness sequence, ApJ 671, L201, [23 c, 2 c/y].

    Google Scholar 

  • Gary, G.A. 2001, Plasma beta above a solar active region: Rethinking the paradigm, SoPh 203, 71,[262 c, 16 c/y].

    Google Scholar 

  • Kramar, M., Jones, S., Davila, J., et al. 2009, On the tomographic reconstruction of the 3D electron density for the solar corona from STEREO COR1 data, SoPh 259, 109, [27 c, 3 c/y].

    Google Scholar 

  • Kramar, M., Airapetian, V., Mikic, Z., et al. 2014, 3D coronal density reconstruction and retrieving the magnetic field structure during solar minimum, SoPh 289, 2927, [14 c, 4 c/y].

    Google Scholar 

  • Liewer, P.C., Hall, J.R., De Jong, M. et al. 2001, Determination of 3-D structure of coronal streamers and relationship to the solar magnetic field, JGR 106/A8, 15903, [26 c, 2 c/y].

    Google Scholar 

  • Lynch, B.J., Li, Y., Thernisien, A.F.R. et al. 2010, Sun to 1 AU propagation and evolution of a slow streamer-blowout coronal mass ejection, JGR 115/A7, A07106, [31 c, 4 c/y].

    Google Scholar 

  • Morgan, H., Habbal, S.R., and Lugaz, N. 2009, Mapping the structure of the corona using Fourier backprojection tomography, ApJ 690, 1119, [17 c, 2 c/y].

    Google Scholar 

  • Morgan, H. and Habbal, S.R. 2010, Observational aspects of the 3-D coronal structure over a solar activity cycle, ApJ 710, 1, [21 c, 3 c/y].

    Google Scholar 

  • Morgan, H. 2011, The rotation of the white light solar corona at height 4 R sun from 1996 to 2010: Tomographical study of Large Angle and Spectrometric Coronagraph C2 Observations, ApJ 738, 189, [10 s, 2 c/y].

    Google Scholar 

  • Ofman, L. 2000, Source regions of the slow solar wind in coronal streamers, GRL 27/18, 2885, [36 c, 2 c/y].

    Google Scholar 

  • Parenti, S., Bromage, B.J.I. 2000, Characteristics of solar coronal streamers. Element abundance, temperature and density from coordinated CDS and UVCS SOHO observations, A&A 363, 800, [61 c, 3 c/y]

    Google Scholar 

  • Saez, F., Zhukov, A.N., Lamy, P., et al. 2005, On the 3-D structure of the streamer belt of the solar corona, A&A 442, 351, [18 c, 1 c/y].

    Google Scholar 

  • Saez, F., Llebaria, A., Lamy, P., et al. 2007, 3-D reconstruction of the streamer belt and other large-scale structures of the solar corona. I. Method, A&A 473, 265, [22 c, 2 c/y].

    Google Scholar 

  • Sheeley, N.R.Jr. and Wang, Y.M. 2007, In/out pairs and the detachment of coronal streamers, ApJ 655, 1142, [43 c, 4 c/y].

    Google Scholar 

  • Sheeley, N.R., Lee, D.D.H., Casto, K.P. et al. 2009, The structure of streamer blobs, ApJ 694, 1471, [51 c, 6 c/y].

    Google Scholar 

  • Sheeley, N.R.Jr. and Rouillard, A.P. 2010, Tracking streamer blobs into the heliosphere, ApJ 715, 300, [21 c, 3 c/y].

    Google Scholar 

  • Wang, Y.M., Sheeley, N.R., Socker, D.G., et al. 2000a, The dynamical nature of coronal streamers, JGR 105, A11, 25133, [120 c, 7 c/y].

    Google Scholar 

  • Wang, Y.M., Sheeley, N.R.Jr., and Rich, N.B. 2000b, Evolution of coronal streamer structure during the rising phase of solar cycle 23, GRL 27/2, 149, [44 c, 3 c/y].

    Google Scholar 

  • Wang, Y.M., Sheeley, N.R., and Rich, N.B. 2007, Coronal pseudostreamers, ApJ 658, 1340, [109 c, 10 c/y].

    Google Scholar 

  • Yeates, A.R., Amari, T., Contopoulos, I., et al. 2018, Global non-potential magnetic models of the solar corona during the March 2015 eclipse, SSRv 214, 99.

    ADS  Google Scholar 

  • Zuccarello, F.P., Bemporad, A., Jacobs, C., et al. 2012, The role of streamers in the deflection of coronal mass ejections: Comparison between STEREO 3-D reconstructions and numerical simulations, ApJ 744, 66, [53 c, 10 c/y].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aschwanden, M.J. (2019). Active Regions. In: New Millennium Solar Physics. Astrophysics and Space Science Library, vol 458. Springer, Cham. https://doi.org/10.1007/978-3-030-13956-8_8

Download citation

Publish with us

Policies and ethics