Skip to main content
Log in

Investigation of Effective Parameters on Gorlov Vertical Axis Wind Turbine

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we aim to develop a low-cost model for evaluating the aerodynamic design and performance of Gorlov vertical axis wind turbine (VAWT). To this end, a double multiple stream tube (DMST) model, which is based on the blade element momentum theory (BEM) has been developed for Gorlov VAWTs. The developed model is validated by comparing the obtained results with the available results in the literature; in addition, overall evaluation on the effects of geometrical and operational parameters, including profile of the blade airfoil, number of blades, helical angle, chord length, aspect ratio and free wind velocity have been performed for aerodynamic performance and the torque coefficient curves of Gorlov VAWT. Considering the results of parametrical evaluation on Gorlov turbine, maximum power coefficient (\({{C}_{P}}\)) is 0.479 for the tip speed ratio (\(\lambda \)) of 3.5 in NACA 0018 airfoil. In addition, it becomes evident that the number of blades and helical angle are important parameters in reducing the aerodynamic loads and improving the rotor stability. As the blade chord length or aspect ratio increases, the performance improves at low \(\lambda \) values; however, it decrease at high \(\lambda \) values and peak \({{C}_{P}}\). Moreover, self-starting behavior has been improved with increasing the blade chord length or free wind velocity and deteriorated by the usage of thinner airfoils. For the studied Gorlov turbine, the performance curves become wider until free wind velocity reaches to the rated velocity, which is 12 m/s for the studied Gorlov turbine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. P’yankov, K. S. and Toporkov, M. N., Mathematical modeling of flows in wind turbines with a vertical axis, Fluid Dynamics, 2014, vol. 49, no. 2, pp. 249–258. https://doi.org/10.1134/S0015462814020136

    Article  MathSciNet  MATH  Google Scholar 

  2. Moghimi, M., Derakhshan, S., and Motawej, H., A Mathematical model development for assessing the engineering and economic improvement of wave and wind hybrid energy system, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, published online 2018, in press. https://doi.org/10.1007/s40997-018-0272-8

  3. UN adopts new Global Goals, charting sustainable development for people and planet by 2030, United Nations Department of Economic and Social Affairs, 2015. https://www.un.org/en/development/desa/news/sustainable/un-adopts-new-global-goals.html#more-15178 (Accessed 19 May, 2019)

  4. Munro, P., van der Horst, G., and Healy, S., Energy justice for all? Rethinking sustainable development goal 7 through struggles over traditional energy practices in Sierra Leone, Energy Policy, 2017, vol. 105, pp. 635–641. https://doi.org/10.1016/J.ENPOL.2017.01.038

    Article  Google Scholar 

  5. Ostos, I., Ruiz, I., Gajic, M., Gómez, W., Bonilla, A., and Collazos, C., A modified novel blade configuration proposal for a more efficient VAWT using CFD tools, Energy Conversion and Management, 2019, vol. 180, pp. 733–746. https://doi.org/10.1016/J.ENCONMAN.2018.11.025

    Article  Google Scholar 

  6. Arslan, H., Baltaci, H., Akkoyunlu, B. O., Karanfil, S., and Tayanc, M., Wind speed variability and wind power potential over Turkey: Case studies for Çanakkale and İstanbul, Renewable Energy, 2020, vol. 145, pp. 1020–1032. https://doi.org/10.1016/J.RENENE.2019.06.128

    Article  Google Scholar 

  7. Abdalrahman, G., Melek, W., and Lien, F.-S., Pitch angle control for a small-scale Darrieus vertical axis wind turbine with straight blades (H-Type VAWT), Renewable Energy, 2017, vol. 114, pp. 1353–1362. https://doi.org/10.1016/J.RENENE.2017.07.068

    Article  Google Scholar 

  8. Derakhshan, S., Moghimi, M., and Motawej, H., Development of a mathematical model to design an offshore wind and wave hybrid energy system, Energy Equipment and Systems, 2018, vol. 6, no. 2, pp. 181–200. https://doi.org/10.22059/EES.2018.31536

    Article  Google Scholar 

  9. Ghasemian, M., Ashrafi, Z. N., and Sedaghat, A., A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines, Energy Conversion and Management, 2017, vol. 149, pp. 87–100. https://doi.org/10.1016/J.ENCONMAN.2017.07.016

    Article  Google Scholar 

  10. Bai, H. L., Chan, C. M., Zhu, X. M., and Li, K. M., A numerical study on the performance of a Savonius-type vertical-axis wind turbine in a confined long channel, Renewable Energy, 2019, vol. 139, pp. 102–109. https://doi.org/10.1016/J.RENENE.2019.02.044

    Article  Google Scholar 

  11. Dilimulati, A., Stathopoulos, T., and Paraschivoiu, M., Wind turbine designs for urban applications: A case study of shrouded diffuser casing for turbines, Journal of Wind Engineering and Industrial Aerodynamics, 2018, vol. 175, pp. 179–192. https://doi.org/10.1016/J.JWEIA.2018.01.003

    Article  Google Scholar 

  12. Abu-Hamdeh, N. H. and Almitani, K. H., Construction and numerical analysis of a collapsible vertical axis wind turbine, Energy Conversion and Management, 2017, vol. 151, pp. 400–413. https://doi.org/10.1016/J.ENCONMAN.2017.09.015

    Article  Google Scholar 

  13. Zamani, M., Maghrebi, M. J., and Varedi, S. R., Starting torque improvement using J-shaped straight-bladed Darrieus vertical axis wind turbine by means of numerical simulation, Renewable Energy, 2016, vol. 95, pp. 109–126. https://doi.org/10.1016/J.RENENE.2016.03.069

    Article  Google Scholar 

  14. Gorlov, A. M., Unidirectional helical reaction turbine operable under reversible fluid flow for power systems, U.S. Patent 5451137, 1995. https://patents.google.com/patent/US5451137A/en

  15. Alaimo, A., Esposito, A., Messineo, A., Orlando, C., Tumino, D., Alaimo, A., Esposito, A., Messineo, A., Orlando, C., and Tumino, D., 3D CFD analysis of a vertical axis wind turbine, Energies, 2015, vol. 8, no. 4, pp. 3013–3033. https://doi.org/10.3390/en8043013

    Article  Google Scholar 

  16. Cheng, Q., Liu, X., Ji, H. S., Kim, K. C., Yang, B., Cheng, Q., Liu, X., Ji, H. S., Kim, K. C., and Yang, B., Aerodynamic analysis of a helical vertical axis wind turbine, Energies, 2017, vol. 10, no. 4, p. 575. https://doi.org/10.3390/en10040575

    Article  Google Scholar 

  17. Peng, H. Y., Lam, H. F., and Liu, H. J., Power performance assessment of H-rotor vertical axis wind turbines with different aspect ratios in turbulent flows via experiments, Energy, 2019, vol. 173, pp. 121–132. https://doi.org/10.1016/J.ENERGY.2019.01.140

    Article  Google Scholar 

  18. Wang, A., Ouyang, H., Xie, H., and Wu, Y., Experimental investigation on a single NACA airfoil’s nonlinear aeroelasticity in wake induced vibrations, Fluid Dynamics, 2019, vol. 54, no. 4, pp. 535–549. https://doi.org/10.1134/S0015462819030121

    Article  MATH  Google Scholar 

  19. Wang, W.-C., Wang, J.-J., and Chong, W. T., The effects of unsteady wind on the performances of a newly developed cross-axis wind turbine: A wind tunnel study, Renewable Energy, 2019, vol. 131, pp. 644–659. https://doi.org/10.1016/J.RENENE.2018.07.061

    Article  Google Scholar 

  20. Balduzzi, F., Bianchini, A., Ferrara, G., and Ferrari, L., Dimensionless numbers for the assessment of mesh and timestep requirements in CFD simulations of Darrieus wind turbines, Energy, 2016, vol. 97, pp. 246–261. https://doi.org/10.1016/J.ENERGY.2015.12.111

    Article  Google Scholar 

  21. He, J., Jin, X., Xie, S., Cao, L., Wang, Y., Lin, Y., and Wang, N., CFD modeling of varying complexity for aerodynamic analysis of H-vertical axis wind turbines, Renewable Energy, 2020, vol. 145, pp. 2658–2670. https://doi.org/10.1016/J.RENENE.2019.07.132

    Article  Google Scholar 

  22. Franchina, N., Persico, G., and Savini, M., 2D-3D Computations of a vertical axis wind turbine flow field: modeling issues and physical interpretations, Renewable Energy, 2019, vol. 136, pp. 1170–1189. https://doi.org/10.1016/J.RENENE.2018.09.086

    Article  Google Scholar 

  23. Bedon, G., Raciti Castelli, M., and Benini, E., Proposal for an innovative chord distribution in the Troposkien vertical axis wind turbine concept, Energy, 2014, vol. 66, pp. 689–698. https://doi.org/10.1016/j.energy.2014.01.004

    Article  Google Scholar 

  24. Balduzzi, F., Drofelnik, J., Bianchini, A., Ferrara, G., Ferrari, L., and Campobasso, M. S., Darrieus wind turbine blade unsteady aerodynamics: a three-dimensional Navier-Stokes CFD assessment, Energy, 2017, vol. 128, pp. 550–563. https://doi.org/10.1016/J.ENERGY.2017.04.017

    Article  Google Scholar 

  25. Saeidi, D., Sedaghat, A., Alamdari, P., and Alemrajabi, A. A., Aerodynamic design and economical evaluation of site specific small vertical axis wind turbines, Applied Energy, 2013, vol. 101, pp. 765–775. https://doi.org/10.1016/j.apenergy.2012.07.047

    Article  Google Scholar 

  26. Meana-Fernández, A., Solís-Gallego, I., Fernández Oro, J. M., Argüelles Díaz, K. M., and Velarde-Suárez, S., Parametrical evaluation of the aerodynamic performance of vertical axis wind turbines for the proposal of optimized designs, Energy, 2018, vol. 147, pp. 504–517. https://doi.org/10.1016/j.energy.2018.01.062

    Article  Google Scholar 

  27. Jafari, M., Razavi, A., and Mirhosseini, M., Effect of airfoil profile on aerodynamic performance and economic assessment of H-rotor vertical axis wind turbines, Energy, 2018, vol. 165, pp. 792–810. https://doi.org/10.1016/j.energy.2018.09.124

    Article  Google Scholar 

  28. Chong, W.-T., Muzammil, W. K., Ong, H.-C., Sopian, K., Gwani, M., Fazlizan, A., and Poh, S.-C., Performance analysis of the deflector integrated cross axis wind turbine, Renewable Energy, 2019, vol. 138, pp. 675–690. https://doi.org/10.1016/J.RENENE.2019.02.005

    Article  Google Scholar 

  29. Paraschivoiu, I., Wind Turbine Design with Emphasis on Darrieus Concept, Polytechnic International Press, 2002. google-Books-ID: sefVtnVgso0C

  30. Paraschivoiu, I., Double-multiple streamtube model for Darrieus wind turbines, InNASA.Lewis Research Center Wind Turbine Dyn., 1981, pp. 19–25.

    Google Scholar 

  31. Jain, P. and Abhishek, A., Performance prediction and fundamental understanding of small scale vertical axis wind turbine with variable amplitude blade pitching, Renewable Energy, 2016, vol. 97, pp. 97–113. https://doi.org/10.1016/J.RENENE.2016.05.056

    Article  Google Scholar 

  32. Kanyako, F. and Janajreh, I., Vertical axis wind turbine performance prediction for low wind speed environment, in: 2014 IEEE Innovations in Technology Conference(InnoTek), 2014, pp. 1–10. https://doi.org/10.1109/InnoTek.2014.6877366

  33. Svorcan, J., Stupar, S., Komarov, D., Peković, O., and Kostić, I., Aerodynamic design and analysis of a small-scale vertical axis wind turbine, Journal of Mechanical Science and Technology, 2013, vol. 27, no. 8, pp. 2367–2373. https://doi.org/10.1007/s12206-013-0621-x

    Article  Google Scholar 

  34. Zhao, Z., Qian, S., Shen, W., Wang, T., Xu, B., Zheng, Y., and Wang, R., Study on variable pitch strategy in H-type wind turbine considering effect of small angle of attack, Journal of Renewable and Sustainable Energy, 2017, vol. 9, no. 5, p. 053302. https://doi.org/10.1063/1.4989795

    Article  Google Scholar 

  35. Kavade, R. K. and Ghanegaonkar, P. M., Effect of best position blade pitching on power coefficient of VAWT at different tip speed ratio by SST & DMST model, FME Transactions, 2018, vol. 46, no. 4, pp. 560–566. https://doi.org/10.5937/FMET1804560K

    Article  Google Scholar 

  36. Batista, N. C., Melicio, R., and Mendes, V. M. F., Darrieus vertical axis wind turbines: methodology to study the self-start capabilities considering symmetric and asymmetric airfoils, Research on Engineering Structures and Materials, 2018, vol. 4, no. 3, pp. 189–217. https://doi.org/10.17515/resm2017.39ds0108

    Article  Google Scholar 

  37. Hashem, I. and Mohamed, M. H., Aerodynamic performance enhancements of H-rotor Darrieus wind turbine, Energy, 2018, vol. 142, pp. 531–545. https://doi.org/10.1016/j.energy.2017.10.036

    Article  Google Scholar 

  38. Kavade, R. K. and Ghanegaonkar, P. M., Performance evaluation of small-scale vertical axis wind turbine by optimized best position blade pitching at different tip speed ratios, Journal of The Institution of Engineers (India): Series C, 2019, vol. 100, no. 6, pp. 1005–1014. https://doi.org/10.1007/s40032-018-0482-2

  39. Tahani, M., Babayan, N., Mehrnia, S., and Shadmehri, M., A novel heuristic method for optimization of straight blade vertical axis wind turbine, Energy Conversion and Management, 2016, vol. 127, pp. 461–476. https://doi.org/10.1016/j.enconman.2016.08.094

    Article  Google Scholar 

  40. Scheurich, F., Fletcher, T. M., and Brown, R. E., The influence of blade curvature and helical blade twist on the performance of a vertical-axis wind turbine, In: 29th ASME Wind Energy Symposium, Orlando, Florida, USA, 2010. https://strathprints.strath.ac.uk/27341/

  41. Sheldahl, R. E. and Klimas, P. C., Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections through 180-Degree Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines, Sandia National Labs., Albuquerque, NM (USA), 1981. https://doi.org/10.2172/6548367

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Moghimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moghimi, M., Motawej, H. Investigation of Effective Parameters on Gorlov Vertical Axis Wind Turbine. Fluid Dyn 55, 345–363 (2020). https://doi.org/10.1134/S0015462820030106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462820030106

Keywords:

Navigation