Skip to main content

Advertisement

Log in

Effect of bearing dissipative torques on the dynamic behavior of H-Darrieus wind turbines

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In recent years, the study on wind turbines for electricity generation has achieved significant advances in the development of new formulations, analysis or even in efficiency. The growth in the use of wind technologies comes from two main facts: (i) utilization of renewable energy sources, and (ii) as an alternative solution to the existing global potential. Hence, vertical-axis wind turbines (VAWTs) present, among other advantages, the possibility of greater efficiency at low tip speed ratios, mainly compared to the horizontal-axis ones. Additionally, the possibility of receiving flow from any direction without the need of tail assembly. As disadvantages, VAWTs present difficult in starting shaft rotation from the rest, being it even more perceptible in small wind turbines, as the drivetrain resistance is relevant. In this sense, this work aims to study the effect of bearing dissipative torques on the dynamic behavior of a H-Darrieus (straight-bladed Darrieus) wind turbine. An approach adding bearing resistance torques is proposed considering their influence on the final rotational speed of the rotor turbine. The proposed method is based on the Newton’s second law, with the torque generated by the turbine and the forces acting on the bearings provided by the double-multiple streamtube model. Bearing dissipative torques are calculated using two methodologies. A correction of those methodologies, in order to consider the Stribeck effect, is also implemented. The results of the model are compared with data from the literature, demonstrating good physical consistency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. ABEEOLICA (2019) Boletim anual de geração eólica - 2018

  2. Ahmad G, Amin U (2017) Design, construction and study of small scale vertical axis wind turbine based on a magnetically levitated axial flux permanent magnet generator. Renew Energy 101:286–292. https://doi.org/10.1016/j.renene.2016.08.027

    Article  Google Scholar 

  3. Asr MT, Nezhad EZ, Mustapha F, Wiriadidjaja S (2016) Study on start-up characteristics of h-darrieus vertical axis wind turbines comprising naca 4-digit series blade airfoils. Energy 112:528–537. https://doi.org/10.1016/j.energy.2016.06.059

    Article  Google Scholar 

  4. Battisti L, Brighenti A, Benini E, Castelli MR (2016) Analysis of different blade architectures on small VAWT performance. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/753/6/062009

    Article  Google Scholar 

  5. Bianchini A, Ferrara G, Ferrari L (2015) Design guidelines for h-darrieus wind turbines: Optimization of the annual energy yield. Energy Convers Manage 89:690–707. https://doi.org/10.1016/j.enconman.2014.10.038

    Article  Google Scholar 

  6. Bouzaher MT, Hadid M, Semch-Eddine D (2016) Flow control for the vertical axis wind turbine by means of flapping flexible foils. J Braz Soc Mech Sci Eng 39(2):457–470. https://doi.org/10.1007/s40430-016-0618-3

    Article  Google Scholar 

  7. Bruining A (1979) Aerodynamic characteristics of a curved plate airfoil section at reynolds numbers 60000 and 100000 and angles of attack from-10 to+ 90 degrees. Delft University of Techology, Department of Aerospace Engineering, Report LR-281

  8. Brusca S, Lanzafame R, Messina M (2014) Design of a vertical-axis wind turbine: how the aspect ratio affects the turbines performance. Int J Energy Environ Eng 5(4):333–340. https://doi.org/10.1007/s40095-014-0129-x

    Article  Google Scholar 

  9. Castelli MR, Englaro A, Benini E (2011) The darrieus wind turbine: proposal for a new performance prediction model based on cfd. Energy 36(8):4919–4934. https://doi.org/10.1016/j.energy.2011.05.036

    Article  Google Scholar 

  10. Dilimulati A, Stathopoulos T, Paraschivoiu M (2018) Wind turbine designs for urban applications: a case study of shrouded diffuser casing for turbines. J Wind Eng Ind Aerodyn 175:179–192. https://doi.org/10.1016/j.jweia.2018.01.003

    Article  Google Scholar 

  11. EPE (2019) Balanço energético nacional 2019 - relatório síntese (ano base 2018). Empresa de Pesquisa Energética - EPE

  12. Farias GM, Galhardo MAB, Vaz JRP, Pinho JT (2019) A steady-state based model applied to small wind turbines. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-019-1704-0

    Article  Google Scholar 

  13. Favacho BI, Vaz JRP, Mesquita ALA, Lopes F, Moreira ALS, Soeiro NS, Rocha OFLd (2016) Contribution to the marine propeller hydrodynamic design for small boats in the amazon region. Acta Amazon 46(1):37–46

    Article  Google Scholar 

  14. Ferreira CS, Madsen HA, Barone M, Roscher B, Deglaire P, Arduin I (2014) Comparison of aerodynamic models for vertical axis wind turbines. J Phys Conf Ser 524:012125. https://doi.org/10.1088/1742-6596/524/1/012125

    Article  Google Scholar 

  15. Harris T, Kotzalas M (2006) Essential concepts of bearing technology, rolling bearing analysis, 5th edn. CRC Press, Boca Raton

    Book  Google Scholar 

  16. Hosseini A, Goudarzi N (2019) Design and cfd study of a hybrid vertical-axis wind turbine by employing a combined bach-type and h-darrieus rotor systems. Energy Convers Manage 189:49–59. https://doi.org/10.1016/j.enconman.2019.03.068

    Article  Google Scholar 

  17. Howell R, Qin N, Edwards J, Durrani N (2010) Wind tunnel and numerical study of a small vertical axis wind turbine. Renew Energy 35(2):412–422. https://doi.org/10.1016/j.renene.2009.07.025

    Article  Google Scholar 

  18. Islam M, Ting DSK, Fartaj A (2008) Aerodynamic models for darrieus-type straight-bladed vertical axis wind turbines. Renew Sustain Energy Rev 12(4):1087–1109. https://doi.org/10.1016/j.rser.2006.10.023

    Article  Google Scholar 

  19. Ismail KA, Batalha TP, Lino FAM (2015) Hydrokinetic turbines for electricity generation in isolated areas in the brazilian amazon. Int J Eng Tech Res 3(8):127–135

    Google Scholar 

  20. Jin X, Zhao G, Gao K, Ju W (2015) Darrieus vertical axis wind turbine: basic research methods. Renew Sustain Energy Rev 42:212–225. https://doi.org/10.1016/j.rser.2014.10.021

    Article  Google Scholar 

  21. Kumar R, Raahemifar K, Fung AS (2018) A critical review of vertical axis wind turbines for urban applications. Renew Sustain Energy Rev 89:281–291. https://doi.org/10.1016/j.rser.2018.03.033

    Article  Google Scholar 

  22. Liang C, Li H (2018) Effects of optimized airfoil on vertical axis wind turbine aerodynamic performance. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-017-0926-2

    Article  Google Scholar 

  23. Liu K, Yu M, Zhu W (2019) Enhancing wind energy harvesting performance of vertical axis wind turbines with a new hybrid design: a fluid-structure interaction study. Renew Energy 140:912–927. https://doi.org/10.1016/j.renene.2019.03.120

    Article  Google Scholar 

  24. Lopes JJA, Vaz JRP, Mesquita ALA, Mesquita ALA, Blanco CJC (2015) An approach for the dynamic behavior of hydrokinetic turbines. Energy Proc 75:271–276. https://doi.org/10.1016/j.egypro.2015.07.334

    Article  Google Scholar 

  25. Mesquita ALA, Mesquita ALA, Palheta FC, Vaz JRP, de Morais MVG, Gonçalves C (2014) A methodology for the transient behavior of horizontal axis hydrokinetic turbines. Energy Convers Manage 87:1261–1268. https://doi.org/10.1016/j.enconman.2014.06.018

    Article  Google Scholar 

  26. Mohamed M, Ali A, Hafiz A (2015) Cfd analysis for h-rotor darrieus turbine as a low speed wind energy converter. Eng Sci Technol Int J 18(1):1–13. https://doi.org/10.1016/j.jestch.2014.08.002

    Article  Google Scholar 

  27. Moreira JL, Mesquita A, Araujo L, Galhardo M, Vaz J, Pinho J (2020) Experimental investigation of drivetrain resistance applied to small wind turbines. Renew Energy. https://doi.org/10.1016/j.renene.2020.02.014

    Article  Google Scholar 

  28. Nguyen CC, Le THH, Tran PT (2015) A numerical study of thickness effect of the symmetric naca 4-digit airfoils on self starting capability of a 1kw h-type vertical axis wind turbine. Int J Mech Eng Appl 3:7–16

    Google Scholar 

  29. Olsson H, Åström K, de Wit CC, Gäfvert M, Lischinsky P (1998) Friction models and friction compensation. Eur J Control 4(3):176–195. https://doi.org/10.1016/S0947-3580(98)70113-X

    Article  MATH  Google Scholar 

  30. Paraschivoiu I (2002) Wind turbine design: with emphasis on Darrieus concept. Presses inter Polytechnique

  31. Peng YX, Xu YL, Zhan S (2019) Hybrid dmst model for high-solidity straight-bladed vawts. Energy Proc 158:376–381. https://doi.org/10.1016/j.egypro.2019.01.118

    Article  Google Scholar 

  32. Sagharichi A, Zamani M, Ghasemi A (2018) Effect of solidity on the performance of variable-pitch vertical axis wind turbine. Energy 161:753–775. https://doi.org/10.1016/j.energy.2018.07.160

    Article  Google Scholar 

  33. Sengupta A, Biswas A, Gupta R (2016) Studies of some high solidity symmetrical and unsymmetrical blade h-darrieus rotors with respect to starting characteristics, dynamic performances and flow physics in low wind streams. Renew Energy 93:536–547. https://doi.org/10.1016/j.renene.2016.03.029

    Article  Google Scholar 

  34. Singh K (2014) Blade element analysis and experimental investigation of high solidity wind turbines. Master’s thesis, University of Calgary

  35. SKF (2003) General catalogue 5000 e. www.skf.com

  36. Spera D (2009) Wind turbine technology: fundamental concepts of wind turbine engineering. ASME Press, New York

    Book  Google Scholar 

  37. Stribeck R (1902) Die wesentlichen eigenschaften der gleit-und rollenlager: the key qualities of sliding and roller bearings. Z Vereines Seutscher Ing 46(38–39):1432–1437

    Google Scholar 

  38. Strickland J (1975) Darrieus turbine: a performance prediction model using multiple streamtubes Technical Report SAND-75-0431 - Sandia National Laboratories

  39. Svorcan J, Stupar S, Komarov D, Peković O, Kostić I (2013) Aerodynamic design and analysis of a small-scale vertical axis wind turbine. J Mech Sci Technol 27(8):2367–2373. https://doi.org/10.1007/s12206-013-0621-x

    Article  Google Scholar 

  40. Templin R (1974) Aerodynamic performance theory for the nrc vertical-axis wind turbine. Low Speed Aerodynamics Laboratory (Canada). National Aeronautical Establishment (Canada)

  41. Vallverdú D (2014) Study on vertical-axis wind turbines using streamtube and dynamic stall models. Universitat Politécnica de Catalunya

  42. Vaz JR, Wood DH, Bhattacharjee D, Lins EF (2018) Drivetrain resistance and starting performance of a small wind turbine. Renew Energy 117:509–519. https://doi.org/10.1016/j.renene.2017.10.071

    Article  Google Scholar 

  43. Vermaak HJ, Kusakana K, Koko SP (2014) Status of micro-hydrokinetic river technology in rural applications: a review of literature. Renew Sustain Energy Rev 29:625–633. https://doi.org/10.1016/j.rser.2013.08.066

    Article  Google Scholar 

  44. Wilson RE, Lissaman PBS (1974) Applied aerodynamics of wind power machines. Oregon State University

  45. Wong KH, Chong WT, Sukiman NL, Poh SC, Shiah YC, Wang CT (2017) Performance enhancements on vertical axis wind turbines using flow augmentation systems: a review. Renew Sustain Energy Rev 73:904–921. https://doi.org/10.1016/j.rser.2017.01.160

    Article  Google Scholar 

  46. Zamani M, Maghrebi MJ, Varedi SR (2016) Starting torque improvement using j-shaped straight-bladed darrieus vertical axis wind turbine by means of numerical simulation. Renew Energy 95:109–126. https://doi.org/10.1016/j.renene.2016.03.069

    Article  Google Scholar 

  47. Zhu H, Hao W, Li C, Ding Q (2019) Numerical study of effect of solidity on vertical axis wind turbine with gurney flap. J Wind Eng Ind Aerodyn 186:17–31. https://doi.org/10.1016/j.jweia.2018.12.016

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the CNPq, CAPES, PROCAD project (Agreement: 88881.200549/2018-01) and PROPESP/UFPA for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelvin Alves Pinheiro.

Additional information

Technical Editor: Monica Carvalho.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinheiro, K.A., Custódio Filho, S.d.S., Vaz, J.R.P. et al. Effect of bearing dissipative torques on the dynamic behavior of H-Darrieus wind turbines. J Braz. Soc. Mech. Sci. Eng. 43, 410 (2021). https://doi.org/10.1007/s40430-021-03122-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-03122-1

Keywords

Navigation