Skip to main content
Log in

Effects of a range expansion on adaptive and neutral genetic diversity in dispersal limited Hazel grouse (Bonasa bonasia) in the French Alps

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Biogeographic range expansions, when related to dispersal limitation, may have counter intuitive effects on genetic diversity. At range margins the relative roles of demographic changes, connectivity and genetic diversity need to be integrated for a successful assessment of population viability. Historically the Hazel grouse (Bonasa bonasia) in France was found in the north of the French Alps and also in a disjunct population in the nearby Jura Mountains. The species has recently undergone a range expansion in a north to south axis in the Alps. Local population size estimates and migration patterns during expansion have previously been studied. In this study, we performed genotyping at neutral (microsatellite) and adaptive (MHC) genetic markers in Hazel grouse. We compared diversity and differentiation (FST and DEST) at three sampling localities along the expansion axis in the French Alps and Jura, as well as at two sampling localities in Sweden, where the population has had a long-term continuous and stable distribution. Strong serial founder effects were found between the French localities, resulting in stronger isolation further south, with a relatively high neutral differentiation (pair-wise FST = 0.117). However, the loss of adaptive diversity MHC was slight. No adaptive differentiation (MHC DEST = −0.015) was observed, thus, the French localities can be considered uniform units with regard to MHC diversity, a criterion to treat populations in these localities as a management unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arguello JR, Little AM, Bohan E, Goldman JM, Marsh SGE, Madrigal JA (1998) High resolution HLA class I typing by reference strand mediated conformation analysis (RSCA). Tissue Antigens 52:57–66

    Article  CAS  PubMed  Google Scholar 

  • Beerli P (2006) Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341–345

    Article  CAS  PubMed  Google Scholar 

  • Burri R, Salamin N, Studer RA, Roulin A, Fumagalli L (2010) Adaptive divergence of ancient gene duplicates in the avian MHC class IIB. Mol Biol Evol 27:2360–2374

    Article  CAS  PubMed  Google Scholar 

  • Canestrelli D, Aloise G, Cecchetti S, Nascetti G (2010) Birth of a hotspot of intraspecific genetic diversity: notes from the underground. Mol Ecol 19:5432–5451

    Article  PubMed  Google Scholar 

  • Chaves LD, Faile GM, Krueth SB, Hendrickson JA, Reed KM (2010) Haplotype variation, recombination, and gene conversion within the turkey MHC-B locus. Immunogenetics 62:465–477

    Article  CAS  PubMed  Google Scholar 

  • Chao A, Jost L, Chiang SC, Jiang YH, Chazdon R (2008) A two-stage probabilistic approach to multiple-community similarity indices. Biometrics 64:1178–1186

    Article  PubMed  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dewoody YD, Dewoody JA (2005) On the estimation of genome-wide heterozygosity using molecular markers. J Hered 96:85–88

    Article  CAS  PubMed  Google Scholar 

  • Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Ekblom R, Sæther SA, Jacobsson P, Fiske P, Sahlman T, Grahn M, Kålås JA, Höglund J (2007) Spatial pattern of MHC class II variation in the great snipe (Gallinago media). Mol Ecol 16:1439–1451

    Article  PubMed  Google Scholar 

  • Ekblom R, Sæther SA, Fiske P, Kålås JA, Höglund J (2010) Balancing selection, sexual selection and geographic structure in MHC genes of Great Snipe. Genetica 138:453–461

    Article  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Excoffier L (2004) Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Mol Ecol 13:853–864

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Foll M, Petit RJ (2009) Genetic consequences of range expansions. Annu Rev Ecol Evol Syst 40:481–501

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Frankham R (2003) Genetics and conservation biology. CR Biol 326:22–29

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2009) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Hanski I (1991) Metapopulation dynamics: brief history and conceptual domain. Biol J Linn Soc 42:3–16

    Article  Google Scholar 

  • Holderegger R, Kamm K, Gugerli F (2006) Adaptive versus neutral genetic diversity: implications for landscape genetics. Landsc Ecol 21:797–807

    Article  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Jombart T (2008) ADEGENET: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  CAS  PubMed  Google Scholar 

  • Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026

    Article  PubMed  Google Scholar 

  • Lacy RC (1997) Importance of genetic variation to the viability of mammalian populations. J Mammal 78:320–335

    Article  Google Scholar 

  • Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19:3038–3051

    Article  PubMed  Google Scholar 

  • Meirmans PG, Hedrick PW (2011) Assessing population structure: FST and related measures. Mol Ecol Resour 11:5–18

    Article  PubMed  Google Scholar 

  • Meyer-Lucht Y, Mulder KP, James MC, McMahon BJ, Buckley K, Piertney SB, Höglund J Adaptive and neutral genetic differentiation among Scottish and endangered Irish ted grouse (Lacopus lagopus scotica). Conservation Genetics (in press)

  • Milinski M, Griffiths SW, Reusch TBH, Boehm T (2010) Costly major histocompatibility complex signals produced only by reproductively active males, but not females, must be validated by a ‘maleness signal’ in three-spined sticklebacks. Proc R Soc B 277:391–398

    Article  PubMed  PubMed Central  Google Scholar 

  • Montadert M, Léonard P (2003) Survival in an expanding hazel grouse Bonasa bonasia population in the southeastern French Alps. Wildl Biol 9:357–364

    Google Scholar 

  • Montadert M, Léonard P (2006) Post-juvenile dispersal of Hazel Grouse Bonasa bonasia in an expanding population of the southeastern French Alps. Ibis 148:1–13

    Article  Google Scholar 

  • Moritz C (1994) Defining ‘Evolutionary Significant Units’ for conservation. TREE 9:373–375

    CAS  PubMed  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–292

    Article  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Newman D, Pilson D (1997) Increased probability of extinction due to decreased genetic effective population size: experimental populations of Clarkia pulchella. Evolution 51:354–362

    Article  Google Scholar 

  • Opdam P, Wascher D (2004) Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation. Biol Conserv 117:285–297

    Article  Google Scholar 

  • Petit RJ, Aguinagalde I, Beaulieu JL, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Müller-Starck G, Demesure-Musch B, Palmé A, Marti JP, Rendell S, Vendramin GG (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565

    Article  CAS  PubMed  Google Scholar 

  • Piertney SB, Oliver MK (2006) The evolutionary ecology of the major histocompatibility complex. Heredity 96:7–21

    CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ray N, Currat M, Excoffier L (2003) Intra-deme molecular diversity in spatially expanding populations. Mol Biol Evol 20:76–86

    Article  CAS  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sahlsten J, Thörngren H, Höglund J (2008) Inference of hazel grouse population structure using multilocus data: a landscape genetic approach. Heredity 101:475–482

    Article  CAS  PubMed  Google Scholar 

  • Seddon JM, Baverstock PR (1998) Variation on islands: major histocompatibility complex (Mhc) polymorphism in populations of the Australian bush rat. Mol Ecol 8:2071–2079

    Article  Google Scholar 

  • Segelbacher G, Paxton R, Steinbrueck G, Trontelj P, Storch I (2000) Characterisation of microsatellites in capercaillie (Tetrao urogallus) (AVES). Mol Ecol 9:1934–1935

    Article  CAS  PubMed  Google Scholar 

  • Slatkin M (1995) A measure of population sub division based on microsatellite allele frequencies. Genetics 139:457–462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sokal RR, Wartenberg DE (1983) A test of spatial autocorrelation analysis using an isolation-by-distance model. Genetics 105:219–237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. PNAS 101:15261–15264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strand TM, Höglund J (2011) Genotyping of black grouse MHC class II B using reference Strand-Mediated Conformational Analysis (RSCA). BMC Research Notes 4:183

    Article  PubMed  PubMed Central  Google Scholar 

  • Strand TM, Westerdahl H, Höglund J, Alatalo RV, Siitari H (2007) The Mhc class II of the Black grouse (Tetrao tetrix) consists of low numbers of B and Y genes with variable diversity and expression. Immunogenetics 59:725–734

    Article  CAS  PubMed  Google Scholar 

  • Storch I (2000) Grouse status survey and conservation action plan 2000–2004. WPA/BirdLife/SSC Grouse Specialist Group, Cambridge

    Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-Statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed  PubMed Central  Google Scholar 

  • Willi Y, Van Buskirk J, Hoffmann AA (2006) Limits to the adaptive potential of small populations. Annu Rev Ecol Evol Syst 37:433–458

    Article  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zegers G (2000) Genetic variability and resistance to infectious disease with particular emphasis on the major histocompatibility complex in the valley pocket gopher. Ph.D. thesis, University of California, Santa Cruz

Download references

Acknowledgments

We are grateful to several anonymous reviewers, Yvonne Meyer-Lucht, Eleanor Jones and other members of the Höglund research group for helpful discussions and comments on the manuscript. We also thank Robin Strand for calculating the binomial probability for MHC data, and Eleftheria Palkopoulou for assistance in the lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Höglund.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rózsa, J., Strand, T.M., Montadert, M. et al. Effects of a range expansion on adaptive and neutral genetic diversity in dispersal limited Hazel grouse (Bonasa bonasia) in the French Alps. Conserv Genet 17, 401–412 (2016). https://doi.org/10.1007/s10592-015-0792-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-015-0792-3

Keywords

Navigation