We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

The larval midgut of Anopheles, Aedes, and Toxorhynchites mosquitoes (Diptera, Culicidae): a comparative approach in morphophysiology and evolution

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The mosquito larval midgut is responsible for acquiring and storing most of the nutrients that will sustain the events of metamorphosis and the insect’s adult life. Despite its importance, the basic biology of this larval organ is poorly understood. To help fill this gap, we carried out a comparative morphophysiological investigation of three larval midgut regions (gastric caeca, anterior midgut, and posterior midgut) of phylogenetically distant mosquitoes: Anopheles gambiae (Anopheles albimanus was occasionally used as an alternate), Aedes aegypti, and Toxorhynchites theobaldi. Larvae of Toxorhynchites mosquitoes are predacious, in contrast to the other two species, that are detritivorous. In this work, we show that the larval gut of the three species shares basic histological characteristics, but differ in other aspects. The lipid and carbohydrate metabolism of the An. gambiae larval midgut is different compared with that of Ae. aegypti and Tx. theobaldi. The gastric caecum is the most variable region, with differences probably related to the chemical composition of the diet. The peritrophic matrix is morphologically similar in the three species, and processes involved in the post-embryonic development of the organ, such as cell differentiation and proliferation, were also similar. FMRF-positive enteroendocrine cells are grouped in the posterior midgut of Tx. theobaldi, but individualized in An. gambiae and Ae. aegypti. We hypothesize that Tx. theobaldi larval predation is an ancestral condition in mosquito evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Anhê ACBM, Godoy RSM, Nacif-Pimenta R, Barbosa WF, Lacerda MV, Monteiro WM, Secundino NFC, Pimenta PFP (2021) Microanatomical and secretory characterization of the salivary gland of the Rhodnius prolixus (Hemiptera, Reduviidae, Triatominae), a main vector of Chagas disease. Open Biol 11(6):210028

    Article  Google Scholar 

  • Anthwal N, Tucker AS (2017) Q&A: Morphological insights into evolution. BMC biology 15:1–4

  • Arrese EL, Soulages JL (2010) Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol 55:207–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atella GC, Silva-Neto MAC, Golodne DM, Arefin S, Shahabuddin M (2006) Anopheles gambiae lipophorin: characterization and role in lipid transport to developing oocyte. Insect Biochem Mol Biol 36:375–386

    Article  CAS  PubMed  Google Scholar 

  • Baldwin KM, Hakim RS (1991) Growth and differentiation of the larval midgut epithelium during molting in the moth, Manduca sexta. Tissue Cell 23:411–422

    Article  CAS  PubMed  Google Scholar 

  • Beenakkers AMT, Van der Horst DJ, Van Marrewijk WJA (1985) Insect lipids and lipoproteins, and their role in physiological processes. Prog Lipid Res 24:19–67

    Article  CAS  PubMed  Google Scholar 

  • Bernick EP, Moffett SB, Moffett DF (2007) Organization, ultrastructure, and development of midgut visceral muscle in larval Aedes aegypti. Tissue Cell 39:277–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Billingsley P (1990) The midgut ultrastructure of hematophagous insects. Annu Rev Entomol 35:219–248

    Article  Google Scholar 

  • Billingsley PF, Lehane MJ (2011) In Biology of the insect midgut (eds Lehane MJ, Billingsley PF) Ch. 1, 3–25 (Chapman and Hall 1996). https://doi.org/10.1007/978-94-009-1519-0

  • Bowman CE (2017) Gut contents, digestive half-lives and feeding state prediction in the soil predatory mite Pergamasus longicornis (Mesostigmata: Parasitidae). Exp Appl Acarol 73:11–60

    Article  PubMed  PubMed Central  Google Scholar 

  • Calvez E, Guillaumot L, Millet L, Marie J, Bossin H, Rama V, Faamoe A, Kilama S, Teurlai M, Mathieu-Daudé F, Dupont-Rouzeyrol M (2016) Genetic diversity and phylogeny of Aedes aegypti, the main arbovirus vector in the Pacific. PLoS Negl Trop Dis 10:e0004374

    Article  PubMed  PubMed Central  Google Scholar 

  • Canavoso LE, Wells MA (2001) Role of lipid transfer particle in delivery of diacylglycerol from midgut to lipophorin in larval Manduca sexta. Insect Biochem Mol Biol 31:783–790

    Article  CAS  PubMed  Google Scholar 

  • Capinera JL (2008) Trehalose. In: Encyclopedia of Entomology (Springer Netherlands). Springer, Dordrecht

  • Castagna M, Shayakul C, Trotti D, Sacchi VF, Harvey WR, Heiger MA (1997) Molecular characteristics of mammalian and insect amino acid transporters: implications for amino acid homeostasis. J Exp Biol 200:269–286

    Article  CAS  PubMed  Google Scholar 

  • Castoe TA, de Koning APJ, Pollock DD (2010) Adaptive molecular convergence: molecular evolution versus molecular phylogenetics. Commun Integr Biol 3:67–69

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapman RF (2013) The alimentary canal, digestion and absorption. In: The insects: structure and function. Cambridge University Press, Cambridge

  • Chathuranga WGD, Karunaratne SHPP, De Silva WAPP (2020) Predator–prey interactions and the cannibalism of larvae of Armigeres subalbatus (Diptera: Culicidae). J Asia Pac Entomol 23(1):124–131

    Article  Google Scholar 

  • Chen J, Aimanova KG, Pan S, Gill SS (2009) Identification and characterization of Aedes aegypti aminopeptidase N as a putative receptor of Bacillus thuringiensis Cry11A toxin. Insect Biochem Mol Biol 39(10):688–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cirimotich CM, Dong Y, Clayton AM, Sandiford SL, Souza-Neto JA, Mulenga M, Dimopoulos G (2011) Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science 332:855–858

  • Collins LE, Blackwell A (2000) The biology of Toxorhynchites mosquitoes and their potential as biocontrol agents. Biocontrol News Inf 21:105N–116N

    Google Scholar 

  • Cristofoletti PT, Ribeiro AF, Terra WR (2001) Apocrine secretion of amylase and exocytosis of trypsin along the midgut of Tenebrio molitor larvae. J Insect Physiol 47:143–155

    Article  CAS  PubMed  Google Scholar 

  • Donald CL, Siriyasatien P, Kohl A (2020) Toxorhynchites species: a review of current knowledge. InSects 11:747

    Article  PubMed  PubMed Central  Google Scholar 

  • D'Silva NM, O'Donnell MJ (2018) The gastric caecum of larval Aedes aegypti: stimulation of epithelial ion transport by 5-hydroxytryptamine and cAMP. J Exp Biol 221:jeb172866

  • Edwards MJ, Jacobs-Lorena M (2000) Permeability and disruption of the peritrophic matrix and cecal membrane from Aedes aegypti and Anopheles gambiae mosquito larvae. J Insect Physiol 46:1313–1320

    Article  CAS  PubMed  Google Scholar 

  • El Husseiny I, Elbrense H, Roeder T, El Kholy S (2018) Hormonal modulation of cannibalistic behaviors in mosquito (Culex pipiens) larvae. J Insect Physiol 109:144–148

    Article  PubMed  Google Scholar 

  • Fernandes KM, Neves CA, Serrão JE, Martins GF (2014) Aedes aegypti midgut remodeling during metamorphosis. Parasitol Int 63:506–512

    Article  PubMed  Google Scholar 

  • Ferreira C, Terra WR (1980) Intracellular distribution of hydrolases in midgut caeca cells from an insect with emphasis on plasma membrane-bound enzymes. Comp Biochem Physiol- Part B Biochem 66:467–473

    Article  Google Scholar 

  • Garcia-Sánchez DC, Pinilla GA, Quintero J (2017) Ecological characterization of Aedes aegypti larval habitats (Diptera: Culicidae) in artificial water containers in Girardot. Colombia J Vector Ecol 42:289–297

    Article  PubMed  Google Scholar 

  • Geary TG, Bowman JW, Friedman AR, Maule AG, Davis JP, Winterrowd CA, Klein RD, Thompson DP (1995) The pharmacology of FMRFamide-related neuropeptides in nematodes: new opportunities for rational anthelmintic discovery? Int J Parasitol 25(11):1273–1280

    Article  CAS  PubMed  Google Scholar 

  • Godoy RSM, Barbosa RC, Procópio TF, Costa BA, Jacobs-Lorena M, Martins GF (2021) FMRF-related peptides in Aedes aegypti midgut: neuromuscular connections and enteric nervous system. Cell Tissue Res 385:585–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godoy RSM, Fernandes KM, Martins GF (2015) Midgut of the non-hematophagous mosquito Toxorhynchites theobaldi (Diptera, Culicidae). Sci Rep 5:15836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes FM, Carvalho DB, Machado EA, Miranda K (2013) Ultrastructural and functional analysis of secretory goblet cells in the midgut of the lepidopteran Anticarsia gemmatalis. Cell Tissue Res 352:313–326

    Article  CAS  PubMed  Google Scholar 

  • Gouveia de Almeida AP (2011) Os mosquitos (Diptera, Culicidae) e a sua importância médica em Portugal: desafios para o século XXI. Acta Med Port 24:961–974

    Article  PubMed  Google Scholar 

  • Gregory TR (2008) The evolution of complex organs. Evo Edu Outreach 1:358–389

    Article  Google Scholar 

  • Harbach RE (2007) The Culicidae (Diptera): a review of taxonomy, classification and phylogeny. Zootaxa 1668:591–638

    Article  Google Scholar 

  • Harbach RE (2008) Mosquito tanonomic inventory: Culicidae. Available at: https://mosquito-taxonomic-inventory.myspecies.info/simpletaxonomy/term/6045

  • Hegedus D, Erlandson M, Gillott C, Toprak U (2009) New insights into peritrophic matrix synthesis, architecture, and function. Annu Rev Entomol 54:285–302

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Martínez S, Cardoso-Jaime V, Nouzova M et al (2019) Juvenile hormone controls ovarian development in female Anopheles albimanus mosquitoes. Sci Rep 9:2127

    Article  PubMed  PubMed Central  Google Scholar 

  • Hixson B, Taracena ML, Buchon N (2021) Midgut epithelial dynamics are central to mosquitoes’ physiology and fitness, and to the transmission of vector-borne disease. Front Cell Infect Microbiol 25(11):653156

    Article  Google Scholar 

  • Juliano SA, Gravel ME (2002) Predation and the evolution of prey behavior: an experiment with tree hole mosquitoes. Beha Eco 13:301–311

    Article  Google Scholar 

  • LaJeunesse DR, Johnson B, Presnell JS, Catignas KK, Zapotoczny G (2010) Peristalsis in the junction region of the Drosophila larval midgut is modulated by DH31 expressing enteroendocrine cells. BMC Physiol 10:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Lange K (2011) Fundamental role of microvilli in the main functions of differentiated cells: outline of an universal regulating and signaling system at the cell periphery. J Cell Physiol 226:896–927

    Article  CAS  PubMed  Google Scholar 

  • Lehane MJ (2002) Peritrophic matrix structure and function. Annu RevEntomol 42:525–550

    Google Scholar 

  • Li C, Kim K (2008) Neuropeptides. WormBook 1–36

  • Li K, Zhang J-H, Yang Y-J, Han W, Yin H (2018) Morphology and fine organization of the midgut of Gampsocleis gratiosa (Orthoptera: Tettigoniidae). PLoS ONE 13(7):e0200405

    Article  PubMed  PubMed Central  Google Scholar 

  • Louzada J, Nichols E (2012) Detritivorous Insects. Insect Bioecology Nutr. Integr. Pest Manag 397–415

  • Mastrantonio V, Crasta G, Puggioli A, Bellini R, Urbanelli S, Porretta D (2018) Cannibalism in temporary waters: simulations and laboratory experiments revealed the role of spatial shape in the mosquito Aedes albopictus. PLoS ONE 13:e0198194

    Article  PubMed  PubMed Central  Google Scholar 

  • Michalski ML, Erickson SM, Bartholomay LC, Christensen BM (2010) Midgut barrier imparts selective resistance to filarial worm infection in Culex pipiens pipiens. PLoS Negl Trop Dis 4:e875

    Article  PubMed  PubMed Central  Google Scholar 

  • Millado JBH, Sumalde AC (2018) Voracity and prey preference of Philippine population of Toxorhynchites splendens wiedemann (Diptera:Culicidae) among Aedes spp (Diptera:Culicidae) and Culex quinquefasciatus Say (Diptera:Culicidae). Southeast Asian J Trop Med Public Health 49:240–250

    Google Scholar 

  • Mitchell A, Sperling FAH, Hickey DA (2002) Higher-level phylogeny of mosquitoes (Diptera: Culicidae): mtDNA data support a derived placement for Toxorhynchites. Insect Syst Evol 33:163–174

    Article  Google Scholar 

  • Moffett SB, Moffett DF (2014) Comparison of immunoreactivity to serotonin, FMRFamide and SCPb in the gut and visceral nervous system of larvae, pupae and adults of the yellow fever mosquito Aedes aegypti. J Insect Sci 5

  • Molina-Cruz A, Zilversmit MM, Neafsey DE, Hartl DL, Barillas-Mury C (2016) Mosquito vectors and the globalization of Plasmodium falciparum malaria. Annu Rev Genet 50:447–465

    Article  CAS  PubMed  Google Scholar 

  • Muse ME, Crane JS. Physiology, epithelialization. [Updated 2021 Apr 29]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK532977/

  • Narayanan Kutty S, Wong WH, Meusemann K, Meier R, Cranston PS (2018) A phylogenomic analysis of Culicomorpha (Diptera) resolves the relationships among the eight constituent families. Syst Entomol 43:434–446

    Article  Google Scholar 

  • Neira Oviedo M, Vanekeris L, Corena-Mcleod MDP, Linser PJ (2008) A microarray-based analysis of transcriptional compartmentalization in the alimentary canal of Anopheles gambiae (Diptera: Culicidae) larvae. Insect Mol Biol 17:61–72

    Article  CAS  PubMed  Google Scholar 

  • Oliveira AH et al (2019) Morphology and morphometry of the midgut in the stingless bee Friesella schrottkyi (Hymenoptera: Apidae). Insects 10

  • Pantoja-Sánchez H, Gomez S, Velez V et al (2019) Precopulatory acoustic interactions of the New World malaria vector Anopheles albimanus (Diptera: Culicidae). Parasites Vectors 12:386

    Article  PubMed  PubMed Central  Google Scholar 

  • Patrick ML, Aimanova K, Sanders HR, Gill SS (2006) P-type Na+/K+-ATPase and V-type H+-ATPase expression patterns in the osmoregulatory organs of larval and adult mosquito Aedes aegypti. J Exp Biol 209(Pt 23):4638–4651. https://doi.org/10.1242/jeb.02551. PMID:17114398

    Article  CAS  PubMed  Google Scholar 

  • Patterson J, Sammon M, Garg M (2016) Dengue, Zika and chikungunya: emerging arboviruses in the New World. West J Emerg Med 17:671–679

    Article  PubMed  PubMed Central  Google Scholar 

  • Pavelka M, Roth J (2010) Basal labyrinth. In: Functional ultrastructure. Springer, Vienna

  • Pimenta PF, Touray M, Miller L (1994) The journey of malaria sporozoites in the mosquito salivary gland. J Eukaryot Microbiol 41:608–624

    Article  CAS  PubMed  Google Scholar 

  • Porretta D, Mastrantonio V, Crasta G, Bellini R, Comandatore F, Rossi P, Favia G, Bandi C, Urbanelli S (2016) Intra-instar larval cannibalism in Anopheles gambiae (s.s.) and Anopheles stephensi (Diptera: Culicidae). Parasit Vectors 9:556

  • Pullikuth AK, Aimanova K, Kang’ethe W, Sanders HR, Gill SS (2006) Molecular characterization of sodium/proton exchanger 3 (NHE3) from the yellow fever vector, Aedes aegypti. J Exp Biol 209:3529–3544

    Article  CAS  PubMed  Google Scholar 

  • Ray K, Mercedes M, Chan D, Choi CY, Nishiura JT (2010) Growth and differentiation of the larval mosquito midgut. J Insect Sci 9:1–13

    Article  Google Scholar 

  • Reidenbach KR, Cook S, Bertone MA, Harbach RE, Wiegmann BM, Besansky NJ (2009) Phylogenetic analysis and temporal diversification of mosquitoes (Diptera: Culicidae) based on nuclear genes and morphology. BMC Evol Biol 9:1–14

    Article  Google Scholar 

  • Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  • Rodrigues NB, Godoy RSM, Orfanó AS, Chaves BA, Campolina TB, Costa BDA, Costa BA, Félix LS, Silva BM, Norris DE, Pimenta PFP, Secundino NFC (2021) Brazilian Aedes aegypti as a competent vector for multiple complex arboviral coinfections. J Infect Dis 224:101–108

    Article  PubMed  Google Scholar 

  • Rolff J, Johnston PR, Reynolds S (2019) Complete metamorphosis of insects. Philos Trans R Soc Lond B Biol Sci 374:20190063

    Article  PubMed  PubMed Central  Google Scholar 

  • Rods MR, Rice CL, Vandervoort AA (1997) Age-related changes in motor unit function. Muscle Nerve 20:679–690

    Article  Google Scholar 

  • Rossi L, di Lascio A, Carlino P, Calizza E, Costantini ML (2015) Predator and detritivore niche width helps to explain biocomplexity of experimental detritus-based food webs in four aquatic and terrestrial ecosystems. Ecol Complex 23:14–24

    Article  Google Scholar 

  • Schmidt-Rhaesa A (2007) Intestinal systems. In: The evolution of organ systems. Oxford University Press

  • Shepard JJ, Andreadis TG, Vossbrinck CR (2006) Molecular phylogeny and evolutionary relationships among mosquitoes (Diptera: Culicidae) from the northeastern United States based on small subunit ribosomal DNA (18S rDNA) sequences. J Med Entomol 43:443–454

    Article  CAS  PubMed  Google Scholar 

  • Smith DS (1984) The Structure of insect muscles. In: Insect ultrastructure. Springer, Boston

  • Syed ZA, Härd T, Uv A, van Dijk-Härd IF (2008) A potential role for Drosophila mucins in development and physiology. PLoS ONE 3:e3041

    Article  PubMed  PubMed Central  Google Scholar 

  • Terra WR (1990) Evolution of digestive systems of insects. Annu Rev Entomol 35:181–200

    Article  Google Scholar 

  • Terra WR, Ferreira C (2005) Biochemistry of digestion. In: Comprehensive molecular insect science. Elsevier

  • Terra WR, Ferreira C, de Bianchi AG (1979) Distribution of digestive enzymes among the endo- and ectoperitrophic spaces and midgut cells of Rhynchosciara and its physiological significance. J Insect Physiol 25:487–494

    Article  CAS  Google Scholar 

  • Timmermann SE, Briegel H (1993) Water depth and larval density affect development and accumulation of reserves in laboratory populations of mosquitoes. Bull Soc Vector Ecol 18:174–187

    Google Scholar 

  • Townson H (1993) The biology of mosquitoes Volume 1. Development, nutrition and reproduction. By A.N. Clements. (London: Chapman & Hall, 1992). 509 pp. ISBN 0–412–40180–0. Bull Entomol Res 83:307–308

  • Truman JW, Riddiford LM (1999) The origins of insect metamorphosis. Nature 401:447–452

    Article  CAS  PubMed  Google Scholar 

  • Volkmann A, Peters W (1989a) Investigations on the midgut caeca of mosquito larvae-I. Fine Structure Tissue Cell 21:243–251

    Article  CAS  PubMed  Google Scholar 

  • Volkmann A, Peters W (1989b) Investigations on the midgut caeca of mosquito larvae-II. Functional Aspects Tissue Cell 21:253–261. Available from: https://www.sciencedirect.com/science/article/pii/0040816689900700

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Wang C (1993) Characterization of glucose transport system in Drosophila Kc cells. FEBS Lett 317:241–244

    Article  CAS  PubMed  Google Scholar 

  • Wang MS, Adeola AC, Li Y, Zhang YP, Wu DD (2015) Accelerated evolution of constraint elements for hematophagic adaptation in mosquitoes. Dongwuxue Yanjiu 36:320–327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang Z, Linser PJ, Harvey WR (1999) Antibody to H(+) V-ATPase subunit E colocalizes with portasomes in alkaline larval midgut of a freshwater mosquito (Aedes aegypti). J Exp Biol 202:2449–2460

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

To the Núcleo de Microscopia e Microanálise (NMM, UFV) and the Program for Technological Development in Tools for Health-PDTIS-FIOCRUZ for technical assistance.

Funding

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, 001)—support to RSMG; Fundação de Amparo à Pesquisa do Estado de Minas Gerais (Fapemig; APQ-00560–17) and Conselho Nacional de Desenvolvimento Científico e Tecnológico—Brasil (CNPq—301725/2019–5)—support to GFM; Instituto Nacional de Ciência e Tecnologia—Entomologia Molecular (INCT-EM)—support to NFCS; CAPES—support to PFPP; National Institutes of Health (USA) R01AI031478 and the Bloomberg Philanthropies—support to MJL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Soares Maia Godoy.

Ethics declarations

Ethical approval

This study was performed in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and the Animal Use Manual (FIOCRUZ, Ministry of Health of Brazil, national decree, no. 3179). The protocol was approved by the Ethics Committee of Universidade Federal de Viçosa (UFV-Protocol 561/2016).

Informed consent

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godoy, R.S.M., Barbosa, R.C., Huang, W. et al. The larval midgut of Anopheles, Aedes, and Toxorhynchites mosquitoes (Diptera, Culicidae): a comparative approach in morphophysiology and evolution. Cell Tissue Res 393, 297–320 (2023). https://doi.org/10.1007/s00441-023-03783-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-023-03783-5

Keywords

Navigation